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Evolution in Al

Artificial
Intelligence

A computerized system that exhibits
behaviour that is commonly thought of as
requiring intelligence

A statistical process that starts
with a body of data and tries to derive a Deep

Learning

rule or procedure that explains the data or
can predict future data

1950’s 1960’s 1970’s 1980’s 1990’s 2000’s 2010’s
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Deep Learning - Gartner Hype Curve
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QSAR?

As of August 2018

Plateau of
Productivity

time
Plateau will be reached:

QO lessthan2years @ 2toS5years @ S5to10years A more than 10 years & obsolete before plateau
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Deep Learning - Image manipulation & generation

man man woman
with glasses without glasses without glasses

woman with glasses

* From manipulating pictures to
making up virtual people

Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.

A. Radford et al Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2016
T. Karras et al Progressive Growing of GANs for Improved Quality, Stability, and Variation, 2018



De novo molecular generation with deep learning has

developed very rapidly

@61997Nahleptblish'ngGmup http://www.nature. /i bi hnology
RESOURCES

INDUSTRY TRENDS _

Artificial intelligence for drug design
Combining rational and irrational approaches
to bring drug design to the desktop.

pharmaceutics ———

druGAN: An Advanced Generative Adversarial Autoencoder Model
for de Novo Generation of New Molecules with Desired Molecular
Properties in Silico

Artur Kadurin,*’m’" Sergey Nikclenko,m'" Kuzma Khrabrov,l Alex Aliper,1L and Alex Zhavoronkov* 10
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Automatic Chemical Design Using a Data-Driven Continuous
Representation of Molecules
Rafael Gomez-Bombarellit# @-, Jennifer N. Weit# f;}, David Duvenaud#, José Miguel Hernandez-

Lobato$#, Benjamin Sanchez-Lengeling*, Dennis Sheberlat -(":}, Jorge Aguilera-lparraguirret, Timothy D.
Hirzelt, Ryan P. Adams™1, and Alan Aspuru-Guzik'# ()

ACS huthorChoice:

centl‘a| e s s o 50 20181 12011
SClence  Cite This; ACS Cent. Sci 2018, 4, 120-

Generating Focused Molecule Libraries for Drug Discovery with
Recurrent Neural Networks

Marwin H. S. Segler,*"v Thierry Kogej,i Christian Tyrchan,® and Mark P. Waller!1®

Molecular De-Novo Design through Deep
Reinforcement Learning

Marcus Olivecrona”, Thomas Blaschke!, Olz Enghvist! and Hongming Chen'

The rise of deep learning in drug

discovery

Hongming Chen’, Ola Engkvist', Yinhai Wang®, Marcus Olivecrona’ and
Thomas Blaschke’

"Hit Discovery, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D Gothenburg, Méindal 43183, Sweden
#Quantitative Biclogy, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Unit 310, Cambridge Science Park,
Milton Road, Cambridge CB4 OWG, UK




The role for machine learning in drug design

TODAY
Bioactivity only One-parameter
Structure-based Free energy
approaches perturbation QSA(P)R

[ AAGe,:=0.9 keal/mol Vi
R AAG; -1Skcal/mol / . —
e 4 ’ 4 < HO—{/

< H 1.6

7, > 3.5
Modify ligand based on Compute Afree energy from Single-endpoint predictions
interactions with the protein molecular dynamics
Require a protein structure High computational cost of

predictions limits use to LO

TOMORROW?

Multi-parameter

Desirability score Al
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Define and score chemical (QSAR) or  Learn, unconstrained, from previous

property (invQSAR) space human designs
Constrained to specific areas of Lack of experimental validation
chemical or property space Requires well-organised data

We can combine single parameter
predictions in multi-parameter modelling



Medicinal chemistry: Our scientific interest

What to make next? How to make it?

De novo design Retrosynthesis




Deep learning at AstraZeneca: Vision

 Creating a world class leading Al platform for drug discovery projects

Augmented
design

Autonomous
design

Automatic
design

b Al design platform
" Al reaction platform

Automatic make and
test (iLab)

Integration

Segler M.H.S. et al. Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction, Chemistry, 2017, 23(25), 5966-5971
Segler M.H.S. et al. Planning chemical syntheses with deep neural networks and symbolic Al, Nature, 2018, 555, 604-610

Research and Early Development, RI, Biopharmaceuticals R&D



De Novo molecule design using generative models

Library-model based molecule design Generative model based molecule design

« Making de novo molecule design using a (probabilistic

Library products _
generative) model

Core structure Synthesis frame
’ | 5 a \"?MJ:J\ - Data-driven — learns from molecules already synthesized by
" ; human experts, not rule-driven (predefined building blocks,

reactions or rules).

Building blocks
- ij . « Can be fine-tuned using a scoring function based on
& (T— ~m,’ molecular desirability (Druglikeness, ADMET, target activity
oS PeTts etc.)

_ _ « After training it should generate highly desirable (based on
Library based molecule design strategy: rule score) structures

based methods based on predefined reaction
rules and available building blocks.



Natural language generation and molecular structure
generation

- Can we borrow concepts from natural language processing and
apply to SMILES description of molecular structures to generate
molecules?

The —— grass ——— IS —— ?

 Conditional probability distributions given context

* P(green | is, grass,The)
O

C — C — = —— 2 /I‘\
H

- P(O|=,C,0C)



Generative model: Recurrent Neural Networks

* When trained, can be used to generate new sequences (e.g. SMILES)

« Sample from probability distribution at every step. Use sampled character

as next input

 Trained using Maximum Likelihood Estimation to maximize the likelihood

of next character

Cell : Cell

[..]
Go

Cell

Cell

CC(=0)OclccceclC(=0)0
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Generative model

e 1.5 million SMILES from ChEMBL

« Conditional probability distributions from natural language processing

B 0
4
3
2
g ) | ~5
[
2 a |
=
5 s -1 —10
ol
N
H I
Sampled SMILES Log P Structure

Molecular de-novo design through deep reinforcement learning; Marcus Olivecrona, Thomas
Blaschke, Ola Engkvist and Hongming Chen; Journal of Cheminformatics, 2017, 9:48
https://doi.org/10.1186/s13321-017-0235-x



Some misconceptions about de novo RNN generated molecules

“The molecules are not diverse”
“The molecules are not synthetic feasible”

Answer: The generated molecules follows the properties of the dataset used as prior

— CEMBL
gerer 3t e

Synthetic accesuby

Segler et al ACS Central Sci. 2018, 4, 120-131 Ertl et al arxiv:17ié_b7449
Diversity Synthetic feasibility



Generative model

- State of the art not 2 years ago
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Calculating A Few Too Many New Compounds

By Derek Lowe | 8 November, 2016



What to make next?

Possible to generate billions of reasonable molecules, ignoring the
relevant questions:
MedChem perspective: What to make next?
Model improvement: What to make next?

Machine Learning -> QSA/(P)R to help!?



QSAR: Since the 19th century

« Meyer-Overton-Rule

The permeability coefficient of a solute is linearly related to its partition coefficient between oil

and water.
The Meyer-Overton correlation for anesthetics

| | | | | |
100 — —

10 —

0.1

Potency of Anesthetic drug

0.001 — | | | | I_
I
0.01 0.1 1 10 100 1000 https://de.wikipedia.org/wiki/Meyer-Overton-Korrelation

Olive oil:gas partition coefficient

The correlation between lipid solubility and potency of general anaesthetics is a
necessary but not sufficient condition



https://de.wikipedia.org/wiki/Meyer-Overton-Korrelation

QSAR: Inverse correlation between efficacy and affinity

Metiamides
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Trends in Pharm. Sci. 2002, 23, 275
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QSAR

Relating a (complex) property y to observables x

(descriptors)

- Correlation — causation

» Complex endpoints

»  Unlimited amount of descriptors purely
theoretical (PSA) to experimental (logD)

What Is the relevant endpoint and what are the
relevant descriptors to use?

CURVE-FITTING METHODS

AND THE MESSAGES THEY SEND
“HEY, L DDA “T UANTED A CURVED “LOOK, ITS
REGRESSION. LINE, 50 T MADE ONE TAPERING OFF""
UITH MATH"
/“&f RO I
"LOOK, IT'S GROUING *I1 SOPHISTICATED, NOT “TM MAKING A
UNCONTROLLABLY" LIKE THOSE BUMBLING SCATTER PLOT BUT
POLYNOMIAL PEOPLE? I DON'T LIANT TO7
_.\_.f —./'.'ﬁ ’ . /'1.’.‘}’
. * . :__2__._’1"'__—- L .
"I NEED TO CONNECT THESE  “UISTEN, SCIENCE IS HARD. “L HAVE A THEORY,
WO UNES, BUT MY FIRST IDEA ~ BUT IM A SERIOUS AND THIS 5 THE ONLY

DIDN'T HAVE ENOUGH MATH”  PERSON DOING MY BEST." DATA T COULD FIND®

T CLICKED ‘SMOOTH "L HAD AN IDEA FOR HOL *PS YOU CPN SEE, THIS

LINES' IN EXCEL? TO CLEAN UP THE DATA. MODEL SMOOTHLY FITS
\WHAT DO YOU THINK?" THE- AT MONO DoNT
EXTEND IT APAAAAY"

https://xkcd.com/2048/



https://xkcd.com/2048/

QSAR: Hansch, Muir and Fujita

Table 1. “Classic™ Parametrization

oi: lipophilicity Lipophilic Electronic Steric
1 Nernst - 1891
logl — |[=kit+k,o+k,  ooemims
i 2 3 Meyer - 1899
. _ , Hammett - 1940
( : sigma: Hammentts Taft - 1956
electronic parameter Taft-Lewis — 1958

C is the molar concentration of
compound that produces a standard

response (e.g., LD50, ED50) Hansch Hansch Hansch
1962
] . . : Charton - 1964
Further it was noted that the prediction of Swain-Lupton — 1968
the biological activity didn’t improved while e = B
using logP alone, but in combination with Seiler - 1974
. ansch -
Hammett’ s sigma. Charton - 1975

Verloop - 1976

*R.F. Rekker, The history of drug research: From Overton to
Hansch, 1992
*http://www.netsci.org/Science/Compchem/feature12.htmi



Drug Discovery Endpoint

IC50, o Clint,
f

,_ Die Dosis macht das Gift!
The dose makes the poison

ﬂ Dose ~

abs B (Paracelsus)

Halflife.C=C,-e V' —>t,, :|n(2).a

Lowest efficacious dose with largest therapheutic index



QSAR: Surrogate descriptors and dose

Influence of lowering logD on

- potencyl

* clearance{]

- absorption (permabilityy & solubility 1))

- Volume of distribution (Plasma Protein Binding })

Dose
No clear understanding of how to

predicit/model dose, efficacy, clearance or
absorption with relevant descriptors!

S P

Log D



logD on Dose and half-life

CH,
HZN—\(_@_ D\_(—H_<CH3 \—(_
0 OH

Atenolol Propranolol
logD;,  Affinity Absorption  Renal Metabolic Vol(u) Half~ Dose
(pA,y) (%) Cli(u) Cli(u) Lkg life (mg)
(ml/min‘kg)  (ml/minkg) (h)

Atenolol 6.5 50 2 — 1 3-5 50-100
Propranolol 83 100 - 470 50 3-5 30-90

e increasing lipophilicity raises Vdu, Cli(u) and potency,
effectively cancelling out any changes In half-life or
steady state concentration and dose

H. van de Waterbeemd et al Lipophilicity in PK design: methyl, ethyl, futile, 2001



23

A

. Reinforcement learning

¢ Update behaviour

Action =-9ward
Active?

Design molecule Good ADME?
Synthetically accessible?
Selectivity?

Learning from doing
Often use pre-trained model as a starting point
Reward function? Weakness

Make more like this?
Make something else instead?



Al. Transfer learning

h
m Inital
J Network

“Newwork |

y

¢ Update behaviour

Design molecule Target specific molecules

* Molecule generator will be retrained to be task specific
« Need of a high quality set of relevant compounds (late LO)



Deep network (or MPO/QSAR) training

Model uncertainty -
4 A never perfect

E—

> needed for OTraining effect of the model

"Poor values
) >
learning

Real score
Real score

Predicted score Predicted score

Incorporation of positive & negative data in training for DL?
QSAR model quality?
False positive problem — What do next?



Real World

Three test cases prospective, augemented design in on-going projects
- Lead identification —based on large amount of late stage data (>5000 data points) BUT
novelty with LO quality,
- Lead identification — selectivity LO guality, based on bigger corpus of target class data
- Lead identification — novel LI series with LO guality, based on Hit Finding readouts (e.g.

HTS)
M\ 'Y N\ f\
1st iteration 2™ 2nd iteration . 3rd iteration >™™ 4th iteration
Novelty Novelty =) Cxpansion ™= | ap library

8 month

Constant re-learning and training



Real World

Achievement: Automated Al work flows identified novel, potent compounds

Al Design Platform

Pt = 1 Novel compounds with
Generation of novel PRSI arget ~100nM potency
molecular ideas oo o oF U e
R E e Shouis S LS
m g m Iterations
) ) ;
- R Ty T Target2 Novel, potent series
RNN B I LT Desirability
— Y . *‘; igé function (<10nM)
REINVENT o & 2 1C50, LogP,
EalgvE e Novelty etc.
ik ooy e &
“gfﬁzi N Target3 Novel, potent compounds
8.0 ¢ Profiling mes) o with good DMPK
pal = M
b 2 R

Research and Early Development, RI, Biopharmaceuticals R&D



Deep learning use case: The models

Activity Prediction

Property Prediction —
Desirability Score

RNN

* SVM model with ECFP6
 Actives pIC50 >7

» ~10.000 compounds
(~2000 test set)

* ROC AUC testset is 0.99

 Validation with 226 new
compounds (ROC AUC
0,97, Accuracy 0.89)

 Solubility

 Clearance

* Permeability
 AZLogD

« MW, cLogP, PSA, RotB
« AZfilters

Dscore = (P2, x P?, x P¢,...)!/(atb+et.)
a, b, c,... = weight

« Transfer learning
* Reinforcement learning

« Scaffold biased
reinforcement learning

D.J. Cummins and M.A. Bell, J. Med. Chem, 2016,59, 6999-7010




Filtering down the Al generated compounds

Al machine
Reinforcement Reinforcement Transfer
m learning Learning, learning
500K cpds scaffold 200K cpds
80K cpds
800K cpds

!

1|

368K cpds ( TI ECFP6 sim. <=0.

65K cpds
(Activiy >=0.8 & Dscore >=0.7)

58K cmpds Glide docking >-7

Il oo Diversity selection
Design set for Med. Chem.

29 Research and Early Development, RI, Biopharmaceuticals R&D



First Iteration: Results

Structure Structure Structure Structure Structure Structure

AZ1l AZ2 AZ3 AZ4 AZ5 AZ6
Target plC50 7.2 6.7 6.2 <5 7.0 6.9
(enzyme)
logD 3.0 2.5 3.1 1.9 2.7 2
Clint (HuMics) <3 9.5 20.8 92 26 44
Solubility
(DMSO) 5 127 294 1000 12 116

Kinase selectivity profile

100

60 ..

20

-20

|

S| ouey]
wrl ol e

Only compound
in training set
with scaffold

Closest known
analogue, not in
the training set




Our PK models
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P’ xa;ast pK (Cl) model Fast solubility model Slow solubility model
ount per Sinned HLM_CLInt_HLM_CLint, Binned HLM_CLInt_HLM_CLint (2) o :: : :: : : %000
0 8% .,....'.'n e R ® 000 <x
L Qs
QW N n L
7 Cl model 2— used in the -
o - future! c .
o . . -
S W Better classification <10 o *
8 By 2 O = e

Slow solubility model binning —
better classification <50uM é‘z

31 Research and Early Development, RI, Biopharmaceuticals R&D
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Outlook & Challenges

* QSAR models
« Affinity model ~20% correctly classified
* The fewer models the better?

« Synthesis is slow — every cluster is novel (all compounds
could be made!) [29 in total, 6 different and novel clusters, 3-
15 weeks]

» Reaction prediciton based on available reagents
« Automatic synthesis

* Need to run significant more cycles with smaller changes
(applicability domain!)




Al Guided Drug Discovery Platform - What is Required?

Generation of Novel Chemical
Space

Reaction & Synthesis
Prediction

MedChem ELN U
U \

AstraZeneca 2 /
PharmSci ELN =

AZ ChemistryConnect

Reaxys® m

AZ Reaction Connect
~20M reactions

Al Design Platform

Protein
Structure
Prediction

#
o
' 4

P g

& &
o BDAe

v

33 Research and Early Development, RI, Biopharmaceuticals R&D

Desirability
function

2 IC50, LogP,

Novelty etc.

_>‘

Fully Automated
DMTA Cycle

ILAB




Reaction informatics: Research Questions
Three Main Questions

1. How feasible is a given reaction?

2. Given a set of starting materials, what are the most feasible and likely
reaction pathways (forward synthesis)?

3. What are the most likely reaction pathways identified by retrosynthetic
analysis resulting in a successful synthesis of a target molecule
(retrosynthesis)?

34  Research and Early Development, RI, Biopharmaceuticals R&D



Deep learning at AstraZeneca: Reaction informatics

* First steps, building:
— World-class Reaction Knowledge Base
— On our work (past collaboration with M. Segler)
— Support RI, LSF PostDocs

MedChem ELN \wd
[
AstraZeneca v
. U. Data curation
PharmSci ELN gy 1 1 Predictive Reaction
W Az ChemistryConnect * . Models
\\I ]
e \ /
Reaxys Reaxys
AZ Reaction Connect

~20mill reactions

@ iLab
/= \
@0

/

Patent ¢
data




State-of-the-art Al solution

a) Synthesis Planning with Monte Carlo Tree Search

{

1) Selection =———3 2) Expansion
pick most
promising position

retroanalyze, add new nodes to
tree by expansion procedure (panel b)

\

pick and evaluate incorporate evaluation
new position in the search tree

5Q

6Q

Y
B OcC

b) Expansion procedure 6
Symbolic — Neural Symboaolic— Neural Symbolic
TF1
Invariant TF2
Target  Encoding :i: ; B Ranked
Molecule m— > T -3 -> i C recursors
Rxn k
TFn
Expansion Policy: keep k best, for each Rxn: keep likely
Prioritizes apply transforms In-Scope reactions (Rxn)
Transformations (TF) to target Filter

Key features

« Guided into promising
directions by proposing a
restricted number of
possible, automatically
extracted transformations

« Predicts whether the
corresponding reactions are
actually feasible

 Networks were trained on 12.4
million reactions from the
Reaxys database

Learning to plan chemical synthesis; Marwin H. S.
Segler, Mike Preuss and Mark P. Waller; arXiv, 2017
arXiv:1708.04202



State-of-the-art in chemical synthesis planning
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+ O 2 2
o

» Model finds a 6-step synthesis route to the intermediate drug
candidate autonomously in 5.4 seconds

* The route is identical to that originally published in 2015 — the
published route was not part of the test set

37
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]

MCTS preference ratio

0.1 0.3 0.5 0.7 0.9
| |

Chemists did not significantly prefer literature
routes over routes found by the model

Unsolved?: natural product synthesis and
stereochemistry

Learning to plan chemical synthesis; Marwin H. S.
Segler, Mike Preuss and Mark P. Waller; arXiv, 2017
arXiv:1708.04202



ELN Data

Reaction Normalisation & Validation

Covers only ELN data (in-house reactions)!
Reactions need to be annotated and cleaned
Reaction normalisation and validation

— Inconsistent component-molecule definitions

. CC_ID = null (~210,000 / ~5.3%) and/or MOLECULE_ID =0 (~700,000 / ~17.5%)

Old 3rd party software for reaction type classification with limited license

Reduce naming inconsistencies
— Registered as "sodium” but should be ”“sodium triacetoxyhydroborate”
— Same entitiy registered as different “molecules” in ChemConnect (sodium;hydroxide, sodium hydride;hydroxide, hydroxysodium)

* Different molecules are linked to the same representation

— CC_ID =200003711 is registered with 75 different molecules (~ 3,700 representations)

- Problems with extracting reactions

... many more inconsistencies!

38 Research and Early Development, RI, Biopharmaceuticals R&D



Overview
Number of Instances (2017-09-24)

Type | #unique

Reaction type 298
Reaction 658,224
Component 3,994,278
Molecule 663,058
Variation 1,113,932
Stage 1,113,934

Current state, not updated, ELN+ HazELNut classification

39 Research and Early Development, RI, Biopharmaceuticals R&D
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AZ’s first DMTA automation platform

First protype built during 2017

All DMTA steps fully integrated

Suited for 100s of uninterrupted
DMTA cycles

Purification &
Analysis

Cycle times of ca. 2h

Successfully applied in ongoing
research project

Reformatting

analysis &

Screeningdata [\’
Compound design  [[I%\




Deep Learning: Outlook

a) Synthesis Planning with Monte Carlo Tree Search

', )

)Selectlon—) 2) Expansion 3 Rollout 4) Update

retroanalyze, add new nodes to ick and evaluate incorporate evaluation
p(oms ing positior tree by expansion procedure (panel by newposl in the search tree
8Q
8Q
8Q
b) Expansion procedure
Symbolic Neural Neural Symbolic

Continuous variable o 2 % i ? | ? B e

representation for: Sommraer i | mowne ey
. I nte rpo |ati 0 n Transformations (TF) to target Filter
* Optimization e
. iBOC \vo N, lll ®
« Exploration & Q. . ® > ® & >
- — /@@D — . O o
SO ST o :

Boc * ™ KNOWLEDGE
o orarn . @

o}
O,N. Br
Y oy Ny o
]
o O:N ON NO,
+ [s] 2 2
of

gD 2

SMILES

Chemical space exploitation Synthesis Prediction Autonomous design

R. Gémez-Bombarelli et al., Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules, ACS Central Science 2018 4 (2), 268-276
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