BIGCHEM Winter School Presentation

Michael Withnall – ESR10 Secure Sharing of Information

Personal Background

- Come from West Haddon
 - Small village in Northamptonshire, England
- 23 years old

Academic Background

- MSc in Chemistry from the University of Nottingham
- Straight to Masters on a 4-year compound course
- In MSc specialized into Computational
 A Quantum Chemistry

H

APP P

4111

111

- Masters thesis on Orbital-Free Density Functional Theory
 - Linear-scaling with number of electrons

BIGCHEM Project ESR10

Secure sharing of information using ensemble of machine learning methods and surrogate data

- To find optimal strategies for sharing of chemical information by combining predications of models developed using data from individual collaborating partners.
- To investigate the surrogate data approach for model sharing
- To apply linear multiparty secure computation approaches for model development
- To compare pros and cons of different methods.

BIGCHEM Project ESR10 – Deliverables

- D4.1 Overview of Strategies for data sharing (in progress)
 - The report will summarize the strategies for secure sharing of data that will be developed and validated during the project.

- D4.2 Comparison of performances of different data sharing approaches (future)
 - Report will assess the performance of different data sharing strategies.

Project Progress ESR10

Projects & Tasks	Jan 17	Feb 17	Mar 17	Apr 17	May 17	Jun 17	Jul 17	Aug 17 Bl Sec.	Sep 17	Oct 17	Nov 17	Dec 17
Work Done												-
Literature Research												
Matched Molecular Pairs												
Neural Network Merging												-
Planned Work												
Literature Research												
Paper Writing												
Neural Network Implementation												
X												

Achievements / Publications ESR10

Successful publication of an article during 1st year of project.

Withnall M; Chen H; Tetko I

Matched Molecular Pair Analysis on Large Melting Point Datasets: A Big Data Perspective.

ChemMedChem, 2017, 12, 1-9.

doi:10.1002/cmdc.201700303 (Open Access)

Dataset

- 275,008 molecules after filtering
- > incomplete records
- > compounds with a molecular weight >1000 Da.
- Primarily in the drug-like range (50–250°C)
- Chemaxon:
- Standardised
- Neutralised
- Salts were removed
- Structures were cleaned
- Melting Points ranging from –199°C to 517°C

- Patents
- Research papers published by:
 - Bradley
 - > Bergström
- Enamine
- The existing OCHEM database

Dataset - Patents

- Majority of chemical data was taken from publicly available patents.
- Added another ca. 225,000 compounds to dataset

Reproduced with permission from the Tetko and Kazan presentation about melting point prediction using OCHEM. I. V. Tetko, D. M. Lowe, A. J. Williams, J. Cheminformatics 2016, 8, DOI 10.1186/s13321-016-0113-y

Method

Investigate pairs where only a single descriptor has changed.

Molecule	Desc.1	Desc.2	Desc.3	Desc.4	Desc.5	Desc.6	Desc.7	Desc.8
Mol1	0	1	17	0	2	0	2	2
Mol2	0	4	18	1	2	0	0	3
Mol3	0	7	14	0	2	0	4	4
Mol4	0	4	13	1	2	0	0	3
Mol5	0	3	17	1	1	0	2	2

Method

Investigate pairs where only a single descriptor has changed.

Molecule	Desc.1	Desc.2	Desc.3	Desc.4	Desc.5	Desc.6	Desc.7	Desc.8
Mol1	0	1	17	0	2	0	2	2
Mol2	0	4	18	1	2	0	0	3
Mol3	0	7	14	0	2	0	4	4
Mol4	0	4	13	1	2	0	0	3
Mol5	0	3	17	1	1	0	2	2

Iterate through list of MMPs:

> Dictionary of molecules and descriptors for fast lookup and lower memory footprint

> Add 'hits' to list of objects with relevant information for later processing

Method

Investigate pairs where only a single functional group, or pair thereof, has changed.

Molecule	FG.1	FG.2	FG.3	FG.4	FG.5	FG.6	FG.7	FG.8
Mol1	0	1	0	1	0	0	1	0
Mol2	0	1	1	0	0	0	1	0
Mol3	0	0	1	0	1	1	0	1
Mol4	0	1	1	0	1	0	1	0
Mol5	1	1	1	1	1	1	1	0

e.g. Mol2 -> Mol4 transformation results in an aryl chloride

e.g. Mol1 -> Mol2 transformation changes carboxylic acid to carboxylic acid ester

Results – 2D Descriptors

Descriptor Changed	Number of Samples	Mean Descriptor Change	ΔT _m /ΔDescriptor (°C)	Standard Error of Mean (°C)
Fluorine atoms	17,297	1.29	1.2	±0.3
Chlorine atoms	9,893	1.04	6.2	±0.4
Bromine atoms	2,804	1.02	14	±0.8
lodine atoms	400	1.02	20	±2.2
H-Donors	12,889	1.02	23	±0.5
H-Acceptors	24,358	1.16	11	±0.3
Rotatable bonds	68,531	1.27	-7.3	±0.2
logP _{calc}	24,818	0.92	4.6	±0.4

• All p-values < 0.0001

• logP classified as unchanging when Δ (logP) < 0.5

Results – 2D Descriptors

Descriptor Changed	Number of Samples	Mean Descriptor Change	ΔT _m /ΔDescriptor (°C)	Standard Error of Mean (°C)
Fluorine atoms	17,297	1.29	1.2	±0.3
Chlorine atoms	9,893	1.04	6.2	±0.4
Bromine atoms	2,804	1.02	14	±0.8
Iodine atoms	400	1.02	20	±2.2
H-Donors	12,889	1.02	23	±0.5
H-Acceptors	24,358	1.16	11	±0.3
Rotatable bonds	68,531	1.27	-7.3	±0.2
logP _{calc}	24,818	0.92	4.6	±0.4

- Similar results to the original study by Schultes et al.
- Largest observed effect from hydrogen bond donors
- Rotatable bond contribution decreases MP

Results – 2D Descriptors

R2

- Hydrogen Bond Acceptors
- Intermolecular Interactions ↑
- Crystal Lattice ↔ Crystal Lattice

Hydrogen Bond Donors

Intermolecular Interactions ↑

Crystal Lattice ↔ Crystal Lattice

R1

Substantial number of Hbond donors are amines:

This can result in protonation, and strong ionic lattice interactions.

<u>Halides</u>

R1

Correlates well with the known intermolecular halogen bonding series:

— ()

R1

R1

MP increasing down the series

Rotatable Bonds

R2

Increase in number of DoF \rightarrow higher molecule flexibility \rightarrow higher melting entropy

In some cases, also leads to less efficient crystal packing.

Conferences / Outreach

- "Drug Innovation in Academia" Heidelberg Poster Presentation
- STC Symposium on Theoretical Chemistry Basel Talk
- RICT2017 In Absentia Poster Presentation
- GCC (Planned) Poster Presentation

TUM Open Day participation (2016, 2017) Outreach

Secondments

- Completed:
 - Secondment to Boehringer Ingelheim in Biberach to work on model-building with existing pharmaceutical data

- Planned:
 - Secondment to CWI in Amsterdam for training on existing and in developing cryptographic solutions to secure multi-party computation

Centrum Wiskunde & Informatica

BIGCHEM Training and Schools

 Fortnightly online courses on Big Data and Pharmacological Design running since the start of the fellowship [first course 29 September 2016]

- Participation in 3 BIGCHEM Schools
 - Winter School 2016 Munich
 - Summer School 2017 Barcelona
 - Winter School 2017 Modena

Planned Future Work

- Currently writing a review paper, comparing existing techniques for achieving the goals outlined by this project.
- Several techniques
 - Metadata (general)
 - Cryptographic (general)
 - Specific Implementation
 - Database searching (general)

Acknowledgements

- The BIGCHEM fellows
- The Tetko group
- Everyone who's helped from AZ and BI
- Marie Curie Actions