

Molecular De Novo Design through Deep Reinforcement Learning

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, Hongming Chen Hit Discovery, Discovery Sciences, AstraZeneca R&D Gothenburg

05 September 2017

Searching Chemical Space

Goal:

Find structures with certain properties

We need two things:

A way to generate structures

A way to rank structures – scoring function

Ideally, the scoring function should influence the way we generate structures

Scoring function

 $S:x \to y \in \mathbf{R}$

X is the chemical structure that we map to a scalar value y. For example:

But how do we generate structures?

Build structures atom by atom?

$$\ \ \, \longrightarrow \ \ \, \longrightarrow \ \ \, \bigwedge \ \ \, \longrightarrow \ \ \, \bigwedge \ \ \, \bigwedge \ \ \,$$

Combine fragments through reaction rules?

4

Overcoming the curse of dimensionality

But how do we generate structures?

Atom by atom

Learn transition probabilities

The model should represent a probability distribution over chemical space

Natural language processing and SMILES

- How to represent molecular structure?
- Can borrow concepts from language processing and apply to SMILES

The \longrightarrow grass \longrightarrow is \longrightarrow ?

- Conditional probability distributions given context
- Pgreen is, grass, The

Natural language processing and SMILES

Neural networks

A neural network is a function approximator

Powerful due to flexibility

Recurrent Neural Networks

The prior RNN

- Restrain structures to 10 to 50 heavy atoms
- And elements H, B, C, N, O, F, P, S, Cl, Br, I
- 1.5 million SMILES from ChEMBL
- Canonicalized using RDKit

The generative process

Structures generated by the Prior

Randomly selected

13

Searching Chemical Space

We need two things:

A way to generate structures

A way to rank structures – scoring function

Ideally, the scoring function should influence the way we generate structures

Augmented Likelihood

Augmented Likelihood=Prior Likelihood+σ×Score

Probability distribution over chemical space

Learning from doing

The Agent

Example 1 – Structure similarity

0.0

0.2

0.4

0.6

Similarity

0.8

- FCFP4 fingerprints
- *k* is the upper limit of *J*

1.0

Generating only Celecoxib

- We chose Celecoxib as a query structure
- First explored if we could recover Celecoxib itself
- k = 1 and $\sigma = 15$
- After 200 training steps, the model generates only Celecoxib
- Even when everything with />0.5 was removed from the Prior ("Reduced Prior"), Celecoxib was recovered

Generating analogues to Celecoxib

- But we want analogues
- *k*=0.7 and *σ*=12
- For canonical Prior learns well
- Reduced Prior requires a higher
 \[
 \sigma = 15 to offset the lower prior likelihood

 Probability distribution over chemical space

Example 1 – Structure similarity

Example 2 – Biological target activity

- Using activity model (SVM model) as the scoring function
- Uncalibrated probability of being active *Plactive*

Score=-1+2 ×*P*↓*active*

- Train for 3000 steps with $\sigma=7$
- Also remove all actives from ChEMBL and train a reduced Prior
- Then train reduced Agent

Enrichment of predicted actives

Model	Prior	Agent	$\operatorname{Prior}^{\dagger}$	Agent^\dagger
Fraction predicted actives	0.03	0.97	0.02	0.96
Fraction similar to train active	0.02	0.79	0.02	0.75
Fraction similar to test active	0.01	0.46	0.01	0.38
Fraction of test actives recovered	0.00	0.13	0.00	0.07
Probability of generating a test set active ($ imes 10^{-3}$)	0.17	40.2	0.05	15.0

 $^{\dagger}\mathsf{DRD2}$ actives witheld from the training of the Prior

- Enrichment of 250 times for both Agents
- Withholding actives affects similarity to actives, but not fraction of predicted actives

Structures generated by reduced Agent

26

Conclusion

Acknowledgements

• Thanks to Hongming, Thomas, and Ola

Thanks to Thierry Kogej and Christian Tyrchan for valuable discussion

Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com

Backup slides

Tokenization of SMILES

- Tokenize combinations of characters like "CI" or "[nH]"
- Represent the characters as one-hot vectors

SMILES:

Graph:

ClCc1c	nH	cn1

NH

		Cl	\mathbf{C}	с	1	с	\mathbf{nH}	с	\mathbf{n}	1
	(C	0	1	0	0	0	0	0	0	0
	с	0	0	1	0	1	0	1	0	0
One-hot) n	0	0	0	0	0	0	0	1	0
encoding:) 1	0	0	0	1	0	0	0	0	1
	nH	0	0	0	0	0	1	0	0	0
	CI	1	0	0	0	0	0	0	0	0

Augmented Likelihood

- Do not want to forget the prior probability distributions
- Instead modify it using a scoring function
- Scoring function rates desirability of a molecule (e.g. bioactivity)

Augmented Likelihood=Prior Likelihood+ σ ×*Score*

- Likelihood is here reported as the natural logarithm
- Sigma is a constant signifying the tradeoff between score and prior likelihood

32

Augmented Likelihood

Augmented Likelihood=Prior Likelihood+constant ×Score

- For example:
 - Molecule = Ethanol
 - Scoring function = "-1 if aromatic else 1"
 - -Score = 1
 - Constant $\sigma = 3$
 - Prior Likelihood = -15

Prior P	constant	Score	Augmented P	
-15	3	1	$-15 + 3 \times 1 = -12$	

The prior RNN

- 94% of the generated sequences are valid SMILES
- 90% are novel not part of the 1.5 million training SMILES
- Most common error is not closing an opened ring or branch

Example 1 – Structure similarity

35

Example 1 – Structure similarity

Example 2 – SVM model

- DRD2 activity data from ExCAPE-DB
- 7218 actives and 340 000 inactive compounds
- Actives were clustered using the Butina algorithm (ECFP6 cutoff of 0.4)
- Clusters were split into train (4/6), validation(1/6), and test(1/6) sets
- 4526, 1287, 1405 actives respectively

Example 2 – SVM model

• Used a SVM classifier in RDKit with C=2⁷ and gamma=2⁻⁶

 Table 2
 Performance of the DRD2 activity model

Set	Training	Validation	Test
Accuracy	1.00	0.98	0.98
ROC-AUC	1.00	0.99	1.00
Precision	1.00	0.96	0.97
Recall	1.00	0.73	0.82

Example 2 – Probability distributions

- Reduced Prior and Agent
- Small changes overall
- But a large change at even one step may significantly change the structures generated

39

Example 3 – Learn to avoid sulphur

 Toy example – learn to generate structures that do not contain sulphur

$$S(A) = \begin{cases} 1 \text{ if valid and no S} \\ 0 \text{ if not valid} \\ - 1 \text{ if contains S} \end{cases}$$

• Train for 1000 steps with $\sigma=2$ and a batch size of 128

Example 3 – Learn to avoid sulphur

Model	Prior	Agent
Fraction of valid SMILES	0.94	0.96
Fraction without sulphur	0.68	0.98
Average molecular weight	371 ± 1.70	367 ± 3.30
Average cLogP	3.36 ± 0.04	3.37 ± 0.09
Average NumRotBonds	5.39 ± 0.04	5.41 ± 0.07
Average NumAromRings	2.26 ± 0.02	2.26 ± 0.02

Example 3 – Learn to avoid sulphur

