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Searching Chemical Space 
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Goal: 

Find structures with certain properties 

We need two things: 

A way to generate structures 

A way to rank structures – scoring function 

Ideally, the scoring function should influence the way we 
generate structures 

 

 



Scoring function 
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S:𝑥 →𝑦∈𝑹 

X is the chemical structure that we map to a scalar 
value y. For example: 

ECFP6 PActive = 0.83 

Generate fingerprint SVM Classifier for 
target activity 



But how do we generate structures? 
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Build structures atom by atom? 

 

 

Combine fragments through reaction rules? 

 

 



Overcoming the curse of dimensionality 
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But how do we generate structures? 
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Atom by atom 

 

Learn transition probabilities 

 

The model should represent a probability 
distribution over chemical space 

 

 

P(C-C)? 



Natural language processing and SMILES 
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•  How to represent molecular structure? 

•  Can borrow concepts from language processing and apply to 
SMILES 

•  Conditional probability distributions given context 

•  𝑃​𝑔𝑟𝑒𝑒𝑛 ⁠ 𝑖𝑠, 𝑔𝑟𝑎𝑠𝑠, 𝑇ℎ𝑒  

•  𝑃​𝑂 ⁠=,𝐶, 𝐶  

 

The grass is ? 

C C = ? 



Natural language processing and SMILES 
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Neural networks 
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A neural network is a function approximator 

 

 

 

 

Powerful due to flexibility 

 

 



Recurrent Neural Networks 
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The prior RNN 
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•  Restrain structures to 10 to 50 heavy atoms 

•  And elements H, B, C, N, O, F, P, S, Cl, Br, I 

•  1.5 million SMILES from ChEMBL 

•  Canonicalized using RDKit 

 

Training 
SMILES 

Pretrained 
Network 

Train RNN 

ChEMBL 

Filter 

Select 1.5 million 



The generative process 
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Structures generated by the Prior 
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Randomly selected 



Searching Chemical Space 
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We need two things: 

A way to generate structures 

A way to rank structures – scoring function 

Ideally, the scoring function should influence the way we 
generate structures 

 

 



Augmented Likelihood 
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𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑=𝑃𝑟𝑖𝑜𝑟 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑+𝜎 ×𝑆𝑐𝑜𝑟𝑒 

 

Prior                                      Agent 



Reinforcement learning 
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•  Learning from doing 

Action Reward Update behaviour 

Design molecule 
Active? 

Good DMPK? 
Synthetically accessible? 

Make more like this? 
Make something else instead? 

Agent 



The Agent 
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Results 



Example 1 – Structure similarity 
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•  Learn to generate analogues 

•  J is the Tanimoto similarity 

•  FCFP4 fingerprints 

•  k is the upper limit of J 



Generating only Celecoxib 
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•  We chose Celecoxib as a query structure 

•  First explored if we could recover Celecoxib itself 

•  𝑘 = 1 and 𝜎=15 

•  After 200 training steps, the model generates only Celecoxib 

•  Even when everything with 𝐽 >0.5 was removed from the Prior 
(“Reduced Prior”), Celecoxib was recovered 



Generating analogues to Celecoxib 
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•  But we want analogues 

•  𝑘=0.7 and 𝜎=12 

•  For canonical Prior learns well 

•  Reduced Prior requires a higher 𝜎=15 to offset the lower prior 
likelihood  

Reduced Prior 



Example 1 – Structure similarity 
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Example 2 – Biological target activity 
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•  Using activity model (SVM model) as the scoring function 

•  Uncalibrated probability of being active ​𝑃↓𝑎𝑐𝑡𝑖𝑣𝑒  

𝑆𝑐𝑜𝑟𝑒=−1+2 ×​𝑃↓𝑎𝑐𝑡𝑖𝑣𝑒  

•  Train for 3000 steps with 𝜎=7 

•  Also remove all actives from ChEMBL and train a reduced Prior 

•  Then train reduced Agent  



Enrichment of predicted actives 
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•  Enrichment of 250 times for both Agents 

•  Withholding actives affects similarity to actives, but not fraction of 
predicted actives 



Structures generated by reduced Agent 
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Conclusion 
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Backup slides 



Tokenization of SMILES 
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•  Tokenize combinations of characters like “Cl” or “[nH]” 

•  Represent the characters as one-hot vectors 

 



Augmented Likelihood 
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•  Do not want to forget the prior probability distributions 

•  Instead modify it using a scoring function  

•  Scoring function rates desirability of a molecule (e.g. bioactivity) 

𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑=𝑃𝑟𝑖𝑜𝑟 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑+𝜎 ×𝑆𝑐𝑜𝑟𝑒 

•  Likelihood is here reported as the natural logarithm 

•  Sigma is a constant signifying the tradeoff between score and 
prior likelihood 

 



Augmented Likelihood 
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𝐴𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑=𝑃𝑟𝑖𝑜𝑟 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑+𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ×𝑆𝑐𝑜𝑟𝑒 

•  For example: 

– 𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑒 = 𝐸𝑡ℎ𝑎𝑛𝑜𝑙 

– 𝑆𝑐𝑜𝑟𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = “−1 𝑖𝑓 𝑎𝑟𝑜𝑚𝑎𝑡𝑖𝑐 𝑒𝑙𝑠𝑒 1” 

– 𝑆𝑐𝑜𝑟𝑒 = 1 

– 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝜎 = 3 

– 𝑃𝑟𝑖𝑜𝑟 𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 = −15 

 
Prior P Score Augmented P constant 

−15 1 −15 + 3 × 1 = −12 3 



The prior RNN 
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•  94% of the generated sequences are valid SMILES 

•  90% are novel – not part of the 1.5 million training SMILES 

•  Most common error is not closing an opened ring or branch 

 

Training 
SMILES 

Pretrained 
Network 

Train RNN 

ChEMBL 

Filter 

Select 1.5 million 



Example 1 – Structure similarity 
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Example 1 – Structure similarity 
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Example 2 – SVM model 
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•  DRD2 activity data from ExCAPE-DB 

•  7218 actives and 340 000 inactive compounds 

•  Actives were clustered using the Butina algorithm (ECFP6 cutoff 
of 0.4) 

•  Clusters were split into train (4/6), validation(1/6), and test(1/6) 
sets  

•  4526, 1287, 1405 actives respectively 

 



Example 2 – SVM model 
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•  Used a SVM classifier in RDKit with C=27 and gamma=2-6 

 



Example 2 – Probability distributions 
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•  Reduced Prior and Agent 

•  Small changes overall 

•  But a large change at even one step may 
significantly change the structures generated 



Example 3 – Learn to avoid sulphur 
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•  Toy example – learn to generate structures that do not contain 
sulphur 

•  Train for 1000 steps with 𝜎=2 and a batch size of 128 



Example 3 – Learn to avoid sulphur 
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Example 3 – Learn to avoid sulphur 
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