In silico ADME

Susanne Winiwarter

AstraZeneca, Gothenburg, Sweden

1

Outline

Outline

Absorption-Distribution-Metabolism-Excretion (ADME)

15.00

20.00

Absorption-Distribution-Metabolism-Excretion (ADME)

see S.Winiwarter et al. *Use of Molecular Descriptors for ADME Predictions*. Compr. Med. Chem. II, D.J.Triggle & J.B.Taylor, Eds., Vol. 5, Elsevier, 531-554 (2007)

Intercorrelations of ADME parameters

(in house screen results)

Permeability vs. Solubility

Permeability vs. Metabolic stability

NOTE: high permeability is **not** the cause for low solubility or high Clint but all three properties are correlated to lipophilicity

S.Winiwarter, in silico ADME (Sept 2017)

in silico ADME

Medicinal Chemistry

2017; DOI: 10.1021/acs.jmedchem.7b00487

Perspective pubs.acs.org/jmc

In Silico Absorption, Distribution, Metabolism, Excretion, and Pharmacokinetics (ADME-PK): Utility and Best Practices. An Industry Perspective from the International Consortium for Innovation through Quality in Pharmaceutical Development

Miniperspective

Franco Lombardo,[↑] Prashant V. Desai,[‡] Rieko Arimoto,[§] Kelly E. Desino,[∥] Holger Fischer,[⊥] Christopher E. Keefer,[#] Carl Petersson,[∇] Susanne Winiwarter,[○] and Fabio Broccatelli^{*,}◆0

... is the use of **computer modeling** to understand structure-property relationships and to **predict DMPK** (drug metabolism and pharmacokinetics) properties **from compound structure**

	in silic	o ADME		Special issue in Mol. Pharm. 2013:	Predictive DMPK: In Silico ADM Jane R. Kenny, <i>Molecular Pharma</i> Physicochemical and DMPK In S Daniel F. Ortwine and Ignacio Alia	E Predictions in Drug Discove iceutics 2013 10 (4), 1151-1152 Silico Models: Facilitating The gas, Molecular Pharmaceutics	ery 2 eir Use by Medicinal Chemists 2013 <i>10</i> (4), 1153-1161
	Focus on success: using 358 Current Topics in M			ja	Evolution of ADME Science: Wh Dennis A. Smith, Molecular Pharm	ere Else Can Modeling and S naceutics 2013 10 (4), 1162-117	imulation Contribute?
5 7 5 4 				Medicinal Chemistry, 2011, 11, 358-38	Role of Electrostatic Potential in Mutagenesis	the in Silico Prediction of M	olecular <u>Bioactivation</u> and
ELSI	EVIER Journ	In-Silico AD		Advanced Drug Delivery Reviews 86 (2015) 83-1	00	13 <i>10</i> (4), 1171-1182	
Abstr The attent brieffy	Nature Reviews D	Discovery Ap		Contents lists available at ScienceDire	ct DRUG	ship Models That Sta cular Pharmaceutics 2	nd the Test of Time 1013 <i>10</i> (4), 1183-1190
	ADMET 1	1*	P P	Advanced Drug Delivery Re	eviews	linical Pharmacoking	etic Data for the Effective and
	TOWARI	M. Paul Gleeson"	ELSEVIER jo	Journal of Medicinal	2017; DOI: 10.1021/a	cs.jmedchem.7b00487 Perspective	cular Pharmaceutics 2013 10
	Han van de Waterbe	¹ Department of Chemi Thailand: ² European	Recent progresses in the e	Chemistry		pubs.acs.org/jmc	arameters 2013 10 (4), 1207-1215
	Following studies in the important causes of co	United Kingdom; ³ Ce 10900, Thailand	in-silico ADME prediction L. Tao ^{a,b} , P. Zhang ^b , C. Qin ^b , S.Y. (<i>In Silico</i> Absorption, Di Pharmacokinetics (ADN Perspective from the Ir	stribution, Metabolism, /IE-PK): Utility and Best F nternational Consortium	Excretion, and Practices. An Industry for Innovation	Vodels for Cytochromes P450 sen, <i>Molecular Pharmaceutics</i>
2000, coinci Kevwo	process. However, in re-	Abstract: AL bioinformatics and Drug Design Group, Department multiple phys ^c Zhejiang Key Laboratory of Gastro-intestinal Patho China help bias mec ^d Innovative Drug Research Centre and College of Ch synthesized to to act as a rep _{ARTICLE} INFO	^b Biainformatics and Drug Design Group, Department of Pl ^c Zhejiang Key Laboratory of Gastro-intestinal Pathophysic China	through Quality in Pharmaceutical Development			13 <i>10</i> (4), 1224-1235
Keywo Toxico	significantly increased to metabolism, excretion ment of a variety of me		ARTICLE INFO	Franco Lombardo, [†] Prashant V. Do Christopher E. Keefer, [#] Carl Peters	esai, [‡] Rieko Arimoto, [§] Kelly E. Desin sson, [∇] Susanne Winiwarter, [○] and Fal	o, [∥] Holger Fischer, [⊥] ⊅io Broccatelli**◆©	P) Inhibitors by Virtual Pharmaceutics 2013 10 (4),
	<i>in silico</i> approaches wi cokinetic, metabolic an	nize them. N ture. In this p discovery. Fo	Article history: Received 14 November 2014 Received in revised form 18 March 2015 Accepted 22 March 2015 Available online 30 May 2015	ABSTRACT: In silico tools to investiga excretion, and pharmacokinetics (ADME-PI an integral part of the current industrial companies are active in the field, scientists en the same background and have limited res	te absorption, distribution, metabolism, K) properties of new chemical entities are drug discovery paradigm. While many ngaged in this area do not necessarily share purces when seeking guidance on how to	In Silico	tion during Drug Discovery:
		amples in the models avail accuracy and phases of disc	Keywords: ADME Absorption Distribution Metabolism Excretion	initiate and maintain an <i>in silico</i> ADME-PK work summarizes the views of a group of in scientists, participating in the <i>In Silico</i> AD International Consortium for Innovation the ment (IQ) Drug Metabolism Leadership Gro	infrastructure in an industrial setting. This ndustrial <i>in silico</i> and experimental ADME DME Working Group, a subgroup of the rough Quality in Pharmaceutical Develop- oup. This overview on the benefits, caveats,	ADME Models In Vivo	Metabolized by Aldehyde
		Keywords: ADME, in	Drug discovery Machine learning Molecular descriptors QSAR	and impact of <i>in silico</i> ADME-PK should s- computational chemists, and DMPK scientis knowledge in the area.	erve as a resource for medicinal chemists, its working in drug design to increase their		

Outline

Important ADME parameters considered in drug discovery

In vitro

Absorption:

solubility, permeability in cell layer, efflux, transporter inhibition

Distribution:

(protein) binding, blood-plasma ratio

Metabolism:

metabolic stability, metabolite ID, reactive metabolite screen, enzyme inhibition

Excretion:

permeability and efflux

In vivo

Absorption:

fraction absorbed, bioavailability

Distribution:

volume of distribution, tissuedistribution, blood-plasma ratio

Metabolism:

in vivo clearance, *in vivo* metabolite ID

Excretion:

in vivo clearance (renal/biliary/hepatic)

DDI – drug-drug interactions

PhysChem: lipophilicity, solubility, pKa, binding properties

ADME Data

* eg cell lines (CaCo2, MDCK, HepRG, hepatocytes) or cellular fractions (mirosomes), plasma, tissue, medium, ...

In vivo

C_{min}, C_{max}, AUC bioavailability volume of distribution clearance drug drug interactions

ADME Data

In vitro

different species reduced cost less variable high throughput possible many datapoints available

In vivo

different species expensive variable low throughput less data available for modeling

ADME data in drug discovery required to estimate human in vivo properties

in silico ADME models mostly based on *in vitro* data can be used to: predict ADME properties for virtual compounds define which compounds need testing

Amount of data available

Public (literature) data sets - ~several 100 to 1000 datapoints in vitro or in vivo, often from different sources

Industrial (in vitro) datasets can be much bigger

eg, within AstraZeneca:

Table 1. Overview of Data Sets for the Eight DMPK Response Variables

Wenlock & Carlsson, J. Chem. Inf. Model. 2015, 55, 125-134

Need to ascertain data compatibility!

Data variability

Inherent assay variability – biological systems

Variability logD < PPB < CLint

2- to 3-fold variability to be expected

response variable	number of molecules with three or more repeat measurements	range in observed stdev	typical stdev
human hep CL _{int}	540	0.01-0.61	0.11
human mic CL _{int}	830	0.01-0.67	0.12
human PPB	1696	0.01-1.56	0.16
log D _{7.4}	1445	0.01-2.12	0.19
rat hep CL _{int}	919	0.01-0.92	0.16
rat PPB	668	0.01-1.25	0.16
solubility (dried DMSO)	363	0.01-1.78	0.25
solubility (solid)	466	0.01-1.60	0.28

Wenlock & Carlsson, J. Chem. Inf. Model. 2015, 55, 125-134

(all <2-fold)

Variability impacts on model results:

RMSEP ~= sqrt (error propagation of population variance in x and y variables) = sqrt(var-x+var-y) = sqrt (0.2²+0.2²)=0.28

→ RMSEP=0.3 is indicating a very good model!

Data variability

Assay variability over time – usually monitored (marker cmpds)

Winiwarter et al, J. Comput. Aided Mol. Des. 2015, 29, 795-807

Outline

Computational methods

Machine learning approaches (QSPR type)

multivariate analysis, PLS, RF, SVM, NN, ...

to consider: amount of data, data variability, data skewness, molecular descriptors to use, prediction confidence

Molecular modeling approaches

pharmacophore analysis molecular docking quantum mechanics

Specific ADME software

eg site of metabolism predictions

Modelling process ... if new data is generated regularily

Validation and confidence

Overall measures based on test/validation sets (eg RMSE, R², ranking ability, ...)

Individual measures for each predicted value:

Distance to training set

Based on descriptors used in model

Based on other descriptors

Distance to model (eg PLS)

Conformal prediction framework – confidence

Classification or regression models

- Depends on
 - data (range, skewness)
 - data quality/variability
 - assay interpretation
 - expected model usage

 Regression models can also be used for classification

Global or local models

Global models

Overall view May be less suited for specific compound series

Local models

May give better local predictions Only for specific chemical space Data may not be sufficient

Outline

In silico ADME examples – Absorption

Lipinski's Rule of 5

Risk for poor absorption if two or more of the below rules are violated

of hydrogen bond donors < 5
of hydrogen bond acceptors < 10
clogP < 5
MW < 500
(Adv.Drug.Del.Rev. 23 (1997) 3; Based on analysis of >2000 oral drugs that reached at least phase II)

Big influence on drug design since then

Today increasing interest in 'beyond rule of 5' space (bRo5)

eg, DeGoey et al, Journal of Medicinal Chemistry (2017) Matsson et al. Advanced Drug Delivery Reviews (2016)

In silico ADME examples – Absorption

. . .

Many QSAR models for human intestinal absorption (HIA) in literature, eg:

Palm et al Pharm Res 1997 (20 cmpds), showed importance of <u>polar surface area</u> (PSA)

Clark et al J.Pharm.Sci.1999 (PSA<140Å²; 3 literature datasets, 74 cmpds)

Zhao et al, J.Pharm.Sci. 2001 (training set 38 cmpds, test set 131 cmpds, used Abraham's general solvation equation; RMSEP=14)

Moda et al, Bioorg.&Med.Chem.Lett. 2012 (training set 510 cmpds, test set 128 cmpds, 'HologramQSAR', $R^2_{pred} = 0.8$)

In silico ADME examples – Permeability

in vitro data - P_{app} Using specific cell lines (eg Caco 2) or artificial membranes (eg PAMPA) Many QSAR models in literature (often on smaller datasets) Important descriptors: lipophilicity, hydrogen bonding, size (PSA, HB, MW, logD, ...)

Many ways to correlate logD, MW (and HB), see eg:

Camenisch et al, Eur.J.Pharm.Sci. 1998

log Perm = $a^{*}\log D - a^{*}\log(1+\beta^{*}D) + b$, MW to be considered additionally based on 30 cmpds

Farrel, DMD 2012

permeability correlated to logD and MW, using a quadratic function

Waring, Bioorg.Med.Chem.Lett. 2009

analysed >9500 internal cmpds with regard to clogD, HBD and MW combinations define whether good permeability can be expected

In silico ADME examples – Permeability

Intrinsic Caco-2 permeability

Routinely used at AstraZeneca, data set increasing by about 100 datapoints per month

In Vitro Intrinsic Permeability: A Transporter-Independent Measure of Caco-2 Cell Permeability in Drug Design and Development, Fredlund et al. Mol. Pharmaceutics 2017, 14, 1601–1609

S.Winiwarter, in silico ADME (Sept 2017)

In silico ADME examples – BBB-distribution

BBB-distribution brain-plasma ratio (K_p ; log $K_p = log BB$) lipophilicity important

simple rules: PSA<60-70 enables brain penetration (Kelder et al. Pharm.Res. 1999, 16, 1514)

N+O<5 \rightarrow drug has good chance to enter brain logP-(N+O) positive \rightarrow logBB positive (Norinder et al. Adv.Drug Del.Rev., 2002, 54, 291)

BUT: free concentration in brain determines whether a compound can be active in brain

→ free brain-plasma ratio (K_{p,uu,brain}) lipophilicity not important, transporter interactions determine (hydrogen bonding)

In silico ADME examples – BBB-distribution

Free brain plasma ratio models – K_{p,uu,brain}

Experimental info: 3 measurements required: in vivo brain-plasma ratio (here from an infusion study in rats); in vitro plasma protein binding; in vitro brain tissue binding (here brain slice technique)

First K_{p,uu,brain} model: Fridén et al J. Med. Chem. 2009, 52, 6233

41 cmpds, RMSE(x-fold): 3.48; PSA and HBA important;

external test set (~70 literature cmpds) RMSE(x-fold):3.99;

HBA useful as simple rule of thumb

S.Winiwarter, in silico ADME (Sept 2017)

In silico ADME examples – Metabolism

In vitro measurements:

liver microsome or hepatocytes incubations

Metabolic stability

CLint = -slope/cell(protein)conc

Various metabolising enzymes contribute depending on compound structure (CYP family, UGT family, ...)

Lipophilicity important, but structural features to be considered

In silico ADME examples – metabolic stability

A Probabilistic Approach to Classifying Metabolic Stability Schwaighofer et al. J. Chem. Inf. Model. **48** (2008) 785

(a) Histogram of experimental values for training data

Data possibly ok for regression, but classification deemed more appropriate for intended usage Probabilistic approach gives 'probability of being stable'

Test data	all data	moderately confident		confident		
assay	AUC	% of data	AUC	% of data	AUC	n
human	71.8	50.7%	80.7	17.0%	92.8	631
mouse female	69.0	59.5%	80.6	18.7%	95.0	326
mouse male	83.5	55.2%	93.7	21.3%	100.0	183
rat male	76.4	37.5%	93.8	15.9%	92.7	264

moderately confident: predicted to be stable with probability <35% (unstable) or > 65% (stable) confident: predicted to be stable with probability <20% (unstable) or > 80% (stable)

In silico ADME examples – Site of Metabolism (SOM)

Example omeprazole

Review on SOM prediction tools: Afzelius et al, DMD, 2007, 39, 61.

Experimental sites of metabolism:

Hoffmann, K.-J.; Drug Metab Dispos, 1986, 14, 341.

In silico ADME examples – OATP1B1 inhibition Combination model approach

Modeling Organic Anion-Transporting Polypeptide 1B1 Inhibition to Elucidate Interaction Risks in Early Drug Design

Zamora & Winiwarter, J. Pharm. Sci. 105 (2016) 3214

PCA based on physchem descriptors separation between active (red) and inactive (green) seen (exp data from Karlgren et al Pharm Res. 2012;29:411-426)

In silico ADME examples – Aqueous Solubility

Highly correlated with lipophilicity, but solid phase properties important (and less easy to predict)

Solubility Challenge: Can You Predict Solubilities of 32 Compounds Using a Database of 100 Measurements? Llinas et al. JCIM **48** (2008) 1289

> **Findings** of the Challenge to Predict Aqueous Solubility Hopfinger et al. JCIM **49** (2009) 1

99 full entries scored, some compounds well predicted by most methods, others not

Figure 2. The histogram plot of the prediction set compounds ranked with respect to their measured solubilities, given by the red curve, versus the percent of correct predictions, where correct is defined as being less than ± 0.51 ogS from the measured value. LogS values are not given for the final four compounds on the right as they are too soluble to measure. The definition for a correct prediction of a too soluble to measure compound is given in the text.

Outline

In silico ADME – utility and caution

In silico ADME is an established tool in drug discovery

Many ways to predict ADME parameters have been published and are being used

Quality and usefulness differs due to

Quality of data (biological data may have inherent variability) Relevance of data

(eg, brain-plasma ratio should be based on free conc)

 \rightarrow Make sure you understand the data before you start to model

Literature

Winiwarter et al. In: Comprehensive Medicinal Chemistry II, D.J.Triggle & J.B.Taylor, Eds., Vol. 5 ADME-Tox Approaches (B.Testa & H.van de Waterbeemd), Elsevier, (2007) 531

Lombardo et al. J. Med. Chem. (2017)

Ekins & Rose, J. Mol. Graph. Modell. 20 (2002) 305

Van de Waterbeemd & Gifford, Nature Reviews Drug Discovery 2 (2003) 192

Segall et al. Expert Opin. Drug Metab. Toxicol. 2 (2006) 325

Gleeson et al. Current Topics in Medicinal Chemistry **11** (2011) 358

Tao et al. Adv. Drug Del. Rev. 86 (2015) 83

Wenlock & Carlsson, J. Chem. Inf. Model. 55 (2015) 125

Winiwarter et al. J. Comput. Aided Mol. Des. 29 (2015) 795

Lipinski et al. Adv. Drug Del. Rev. 23 (1997) 3

Matsson et al. Adv. Drug Del. Rev. **101** (2016) 42

Palm et al Pharm. Res (1997); Clark et al J. Pharm. Sci.(1999);

Zhao et al, J. Pharm. Sci. (2001); Moda et al, Bioorg. & Med. Chem. Lett. (2012)

Camenisch et al. Eur. J. Pharm. Sci. 1998; Farrel, Drug Metab. Dispos. 2012; Waring, Bioorg. & Med. Chem. Lett. (2009)

Fredlund et al. Mol. Pharmaceutics 14 (2017) 1601

Winiwarter et al J. Med. Chem. (1998)

Fridén et al. J. Med. Chem. 52 (2009) 6233

Chen H et al. J. Mol. Graphics Modell. 29 (2011) 985; Varadharajan et al., J. Pharm. Sci. 104 (2015)1197

Schwaighofer et al. J. Chem. Inf. Model. 48 (2008) 785

Afzelius et al. DMD, 39 (2007) 61; Hoffmann, Drug Metab Dispos, 14 (1986) 341

Xiao et al. Biochem. Pharmacol. 81 (2011) 669

Zamora & Winiwarter, J. Pharm. Sci. 105 (2016) 3214

Llinas et al. JCIM 48 (2008) 1289; Hopfinger et al. JCIM 49 (2009) 1