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Background

= Biomedical engineering = Research at the Institute for

(B.Sc. and M.Sc.) Bioengineering of Catalonia
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BIGCHEM Project: ESR]

= Machine learning methodologies for mining large

compound data sets
- Explore different methods to build models with large data sets

- Develop machine learning strategies to predict compounds with

desired multi-target activity profiles

u Sept. 2016 — Mar. 2018

UNIVERSITAT

~\ Boehringer
I”ll

, Mar. 2018 — Sept. 2019
Ingelheim g

“ Chemotargets Secondment (2018/2019)
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Overview of the 1" year: Training

BigChem schools and online courses
Chemistry course (2 weeks; September 2016)
German course A1.1 (Winter semester 2016)
German course A2.1 (Summer semester 2017)

Teaching in the Programming lab of Life Sciences

Informatics Master (2 sessions; Summer semester 2017)

Chemogenomics workshop mainly given by Dr. J.B. Brown

(attendance and a talk; August 2017)
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Overview of the 15" year: Research

= Application of support vector machines classification

(SVM) and regression (SVR)

- Study 1: Influence of training set
composition and size on SVM

activity predictions
Rodriguez-Pérez et al. J. Chem. Inf. Model. 2017, 57, 710-716.

- Study 2: Prioritized structural
features for compound activity and

potency predictions

Rodriguez-Pérez et al. ACS Omega. 2017, 2, 6371-6379.
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Machine learning: SVM

= Derivation of computational models for the prediction of

compound properties

- Classification (SVM) = Binary activity (active/inactive)

Training set Classification model Test set
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Machine learning: SVR

= Derivation of computational models for the prediction of

compound properties

- Regression (SVR) = Potency value (pKj))

Training set Regression model Test set
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Machine learning: SVM vs. SVR

Regression model

Classification model

and a categorical label y € {-1,1}

o

and a numerical label y € R

Derivationof: H: <w,x> +b =0 Derivation of:

ﬂning data: feature vector x e} Gining data: feature vector x h

f(x) =<w,x> +b

O Support vectors
Training data
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Motivation: Model interpretation

= Kernel trick: mapping into a high-dimensional space

= Black box character of SVM and SVR predictions

Input space Higher dimensional space
A A
® o @ ©
® Mapping 4 @
®
@ S /
> <z >

|dentification of features that determine classification (SVM)

and regression (SVR) model performance
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Methods: Calculation protocol

® Data:

- 15 activity classes from ChEMBL 22
- For classification inactives from ZINC

= Molecular fingerprints: MACCS and ECFP4

Input data

Actives and
inactives

Actives

Models

Feature weight
analysis

Prediction

Classification:
active/inactive

Regression:
potency (pK)

Science
Informatics

ull LIMES

Life & Medical Sciences Institute

UNIVERSITAT

vV



Results: Global performance

® Accurate classification of active and inactive compounds

= Errors of regression were less than one order of magnitude
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Results: Global performance

® Accurate classification of active and inactive compounds
= Errors of regression were less than one order of magnitude

= Higher performance of ECFP4 relative to MACCS
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Feature weight analysis: MACCS

= Some features had consistently AR S SN S

high/low weights g

= The importance of many
features differed between
SVM and SVR

Classification ~ Regression
B High B High
Medium Medium

.. . . Low Low
Thrombin inhibitors
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Feature weight analysis: MACCS

= Some features had consistently

high/low weights

= The importance of many
features differed between
SVM and SVR

Thrombin inhibitors

Feature index
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Feature weight analysis: MACCS
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Mapping of ECFP4 features

= Highly weighted features were mapped to

correctly predicted compounds

Active

= Different atom NH
environments (only partly prediction. | SVM @(OO
pe

overlapping) are important [ )"
for activity and potency o pKi =7.44
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predlctlon 1 Weight in @:6
iclassification (SVM) .
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Mapping of ECFP4 features

______________________
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Summary

= SVR is an extension of SVM algorithm

= Some features contribute very differently to

classification and regression
= Mapping of highly weighted features helped to:
- Model interpretation

- ldentification of SAR-informative regions of

compounds
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