Beyond the scope of Free-Wilson analysis: Building interpretable QSAR models with machine learning algorithms

Hongming Chen Discovery Sciences, AstraZeneca R&D Gothenburg

AstraZeneca

Free-Wilson analysis

- FW method is one of the oldest QSAR method appeared in 1960's (J. Med. Chem. 1964, 7, 395-9)
- The basic idea in Free-Wilson approach is that the biological activity of a molecule can be described as the sum of the activity contributions of its R-groups

Activity =
$$C + a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + b_1 y_1 + b_2 y_2 + b_3 y_3 + \dots$$

= $C + \sum_{i=1}^n a_i x_i + \sum_{j=1}^m b_j y_j$

 a_i and b_j are coefficients that represent the contribution made by each R-group to the activity of a compound;

R&D | Discovery Sciences

ź

Renaissance of Free-Wilson Method

 Recently FW analysis has been reemerged as an useful QSAR method for lead optimization.

- The advantages of FW methods:
- No R-group parameters needed

Interpretable model with clear contribution of Rgroups.

- The disadvantage of FW methods:
- Can't predict for compound whose R-group is outside the training set R-group list.
- Contribution of R-group may not be additive

J Comput Aided Mol Des (2012) 26:1143-1157 DOI 10 1007/s10822-012-9605-7

Composite multi-parameter ranking of real and virtual compounds for design of MC4R agonists: Renaissance of the Free-Wilson methodology

Ingemar Nilsson · Magnus O. Polla

Received: 22 May 2012/ Accepted: 7 September 2012/ Published online: 2 October 2012 © Springer Science+Business Media B.V. 2012

Abstract Drug design is a multi-parameter task present Introduction in the analysis of experimental data for synthesized compounds and in the prediction of new compounds with desired properties. This article describes the implementa- of challenges to the ultimate goal of delivering clinically tion of a binned scoring and composite ranking scheme for beneficial and profitable drugs to the market. To be suc-

The pharmaceutical industry is currently facing a number

Building QSAR model comprising the contribution from R-groups

Molecular Fingerprint descriptors

- As an analogue to biometric fingerprint, molecular fingerprint is a set of values which represent the characteristics of a compound.
- Molecular fingerprint is normally expressed by an array of bits.

Fingerprint based on fragments

Circular fingerprint

Beyond the scope of FW method

- A new method is proposed to overcome the drawbacks of FW method.
- Using R-group signatures (a circular fingerprint by nature) to replace the R-group structures as descriptor. (Faulon, J. L., *et al J. Chem. Inf. Comput. Sci.* 2003, *43*, 707–20.)
- Using SVM (LIBSVM) as modeling method instead of linear regression
- Deriving signature gradient for SVM model to measure the relative contribution of R-groups

R-group contribution in SVM model

Carlsson, L. et al. J. Compt. Info. Model. 2009, 49, 2551-8.

- SVM gradient represents how large a variable impact the **QSAR** equation
- Model discrete gradient for individual signature can be calculated.
- The model gradient for each individual R-group can also be calculated.

Xe

Benefits of the R-group Signature SVM method

• Overcome the limited prediction scope problem for FW method due to the fuzziness of signature.

- Signatures (fingerprints) can capture subtle chemical functionalities in R-group and therefore might improve prediction accuracy.
- SVM method can efficiently handle the non-linear QSAR relationship.
- QSAR model is as interpretable as FW method via calculating the R-group contribution based model gradient for signatures.

Test cases for the methodology

• Eleven focused dataset were chosen from GVKBio chemical patents

R&D | Discovery Sciences

Distribution of bioactivity data

Building QSAR models

- Various model building strategies were used:
- > Mol. Signature + SVM (Mol_Sign_SVM)
- > Mol. ECFP_6 + SVM (Mol_ECFP6_SVM)
- > Rgroup Signature + SVM (Rgp_Sign_SVM)
- > Azdescriptor + SVM (Azdesc_AZOSVM)
- Free-Wilson method (FW)
- γ and C value in LIBSVM were optimised through grid search
- Each dataset was split into training/test set with a ratio of 4:1 for validation
- 10-fold cross validation to check the model robustness.

Model performance

Comparison of performance on FW test set

- FW can only predict part of the test set due to its limitation on predicting domain.
- R-group signature models perform better than FW models in most of the cases.

Model performance

Comparison of performance on full test set (FW model only predict on part of the test set.)

• Full molecular signature/ECFP6 model have comparable performance with R-group signature model. Azdesc model perform worst.

Model interpretation

- Machine learning model normally were regarded as "black-box" model due to lack of interpretability.
- Signature gradients and R-group gradients for SVM model were calculated for model interpretation.
- The validity of interpretability for R-group gradients was examined by correlating with R-group contribution coefficient in the FW model.

• Significant correlation was observed in most of the cases. This promising result suggests that the R-group SVM model could be as interpretable as the FW model.

Dataset	Nr. Compound	Nr. R-groups	R ²	RMSE
F7	292	204	0.62	0.47
JAK1	736	573	0.50	0.47
TYK2	736	576	0.71	0.32
CDK5	184	53	0.33	0.29
GNRHR	159	157	0.005	0.44
IL4	532	241 (11ª)	0.42	0.38
MAPK14	488	476	0.0007	0.94
MGLL	982	681 (3ª)	0.35	0.79
MMP2	439	473	0.42	0.66
PIK3CA	243	122	0.52	0.32
PRSS2	271	166	0.64	0.37

Correlation of SVM R-group gradients with R-group contr. Of FW model

Note: a) Outliers which were excluded in the regression analysis

Model interpretation

R&D | Discovery Sciences

Signature examples

JAK1 R-group examples

Top three most influential R-groups

F7 R-group examples

R&D | Discovery Sciences

AstraZeneca "SARPlatform"

• This new method has been implemented into the proprietary web based tool ("SARPlatform") for chemist to build and visualize R-group QSAR models

Download PDF (sorted by R1 gradient contributions) Download PDF (sorted by R2 gradient contributions) Download PDF (sorted by R3 gradient contributions)

18

AstraZeneca "SARPlatform"

• Signature gradient can be mapped and visualized at atom level to help to understand the SAR

Future development

• Including information of distance to attachment point into the signatures to reduce noise.

- Making inverse QSAR to design new compounds based on SVM model.
- Develop confidence metrics for model prediction

Conclusions

• A novel methodology was developed to build Free-Wilson like local QSAR model by combining R-group signatures and the SVM algorithm.

• The signature/R-group gradient concept was introduced to interpret SVM model (applicable to machine learning model in general).

- The signature models overcome the FW's prediction domain problem and also have better accuracy than typical FW models.
- Significant correlation between R-group gradient and FW R-group contribution highlight that the signature SVM model is as interpretable as FW model

Acknowledgement

- Ola Engkvist
- John Cumming
- Willem Nissink

Backup Slides

Model performance

Dataset	Mol_ECFP6_SVM		Mol_Sign_SVM		Rgp_Sign_SVM		AZdesc_AZOSVM	
-	Q ²	RMSE						
CDK5	0.54	0.45	0.62	0.41	0.58	0.44	0.58	0.36
F7	0.73	0.50	0.75	0.48	0.74	0.50	0.70	0.53
GNRHR	0.49	0.62	0.47	0.64	0.44	0.65	0.46	0.64
IL4	0.64	0.34	0.63	0.34	0.63	0.34	0.58	0.36
JAK1	0.58	0.47	0.58	0.47	0.63	0.43	0.50	0.51
MAPK14	0.34	0.64	0.31	0.66	0.37	0.62	0.28	0.66
MGLL	0.51	0.69	0.60	0.62	0.54	0.66	0.49	0.70
MMP2	0.61	0.59	0.67	0.55	0.70	0.53	0.55	0.64
PIK3CA	0.37	0.38	0.40	0.38	0.47	0.35	0.27	0.41
PRSS2	0.60	0.42	0.65	0.39	0.60	0.42	0.61	0.42
TYK2	0.60	0.51	0.64	0.47	0.68	0.44	0.61	0.49

Performance on 10-fold cross validation

• 10-fold cross validation results are similar to the full test set results. No bias introduced in the test set.

Model interpretation

• Distribution pattern for R2 in JAK1 set, R4 in F7 set are significantly different, while Rgroup contribution for other positions aligned well.

• This results may imply that SVM R-group contribution value does not reflect the absolute contribution to bioactivity, but a relative ranking of R-group's contribution instead

• It is probably better to compare R-groups which belong to the same substituent position

Most influential signatures in JAK1 and F7 set

- The gradients for some highly influential signatures have pretty low deviation.
- Some small signatures (mostly having only 2 atoms in signature) have larger variation. Their contribution may depend on their surrounding environment.

