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has become a valuable resource 

is the business model of many companies (    ,    etc.)

 Information...

is nowadays almost always digitalized
 -> allows for easier use, but also for easier misuse 

needs to be protected 



 Cryptography...

is the mathematical study of info-protecting techniques

provides tools for protecting information

provides a rigorous understanding of 
what security these tools achieve
what security these tools do not achieve

is used in daily life by everybody - maybe unwittingly



Dear Bob

It was ..... 
.............

      Alice

ALICE EVE BOB

 Secure Communication
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Dear Bob

It was ..... 
.............

      Alice
Dear Bob

It was ..... 
.............

      Alice

Need:
 1. Alice & Bob know 
2. Eve does not know 

 Solution: Encryption



= electronic file / data: m ! M
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Dear Bob

It was ..... 
.............

      Alice

= en- & decryption key: k ! K

= encryption function/procedure: Ek : M " C
  with corresponding decryption function: Ek-1

= encrypted file (= ciphertext): c = Ek(m)
  and: m = Ek-1(c)

 “Dictionary”
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Need:
 1. Alice & Bob know 
2. Eve does not know 

 A (Even More) Mechanical View on Encryption
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But what if Alice & Bob have 
no common secret key       ?

 Problem
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Dear Bob

It was ..... 
.............

      Alice

But what if Alice & Bob have 
no common secret key       ?

Sending the key from, e.g., Bob to Alice does 
not work, since then Eve learns it as well...

 Problem
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Two keys:
- a public-key to encrypt
- a secret-key to decrypt

 Towards a Digital Solution
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 Towards a Digital Solution
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Hi Bob

Let’s ..... 
.............

    Charlie etc.

Owner: BOB

 Towards a Digital Solution



We need: 

Encryption function Epk , which depends on public-key pk, 
such that when given pk (only):

1. evaluating Epk(m) (on any m) is “easy”, and
2. inverting Epk , i.e., computing m from Epk(m), is “hard”.

With the help of a trapdoor, the secret-key sk, 
inverting Epk becomes “easy”. 

Is called a trapdoor one-way function (TOWF).

 In Technical Terms



pk = English-to-Swahili dictionary 
      (i.e. with the English entries sorted)

Given pk =     :
1. translating into Swahili (= computing Epk(m)) is easy, 
2. translating back into English (= inverting Epk) is hard. 

sk = Swahili-to-English dictionary 
      (i.e. with the Swahili entries sorted)

Epk(m) = translation of (English text) m into Swahili 

Yet with the help of      , the latter becomes easy. 

 An “Toy Example” of a TOWF



Examples: Set n = 11.
5 + 8 = 

 Some Maths: Modular Arithmetic

n 2nn#1 n+1n+2
0 1 2 n

2n#1
n#1

0

13 = 2  (mod 11)  
5･8 = 40 = 7  (mod 11)  
2･7 + 9 = 14 + 9 = 1  (mod 11)  = 23

= 12 = 1or    = 3 + 9 (mod 11)  
43 = 4･4･4 = 16･4 = 5･4 (mod 11)  = 20 = 9

Formally: a = b (mod n) if a = b + k･n for some k .

2n+1

1
n#1n#2

···
···

modulus

0 1 2# 1#2 3 4 ···
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Why is this interesting? 
Numbers remain bounded in size
Useful structure



Theorem: For any number a $ 0 :  ap
 
#1 = 1 (mod p) . 

 Some Maths: Fermat’s Little Theorem

Examples: Let p = 5 and a = 3. Then
34 = 3･3･3･3 = (mod 5)9･3･3 = 4･3･3 

= 12･3 = 2･3 = 6 = 1 

Corollary: If x = y (mod p#1), then for any a :
ax = ay (mod p) . 

Let p be a prime number. 

Proof: x = y (mod p#1) ⇒ x = y + k･(p#1)            
⇒ ax = ay+

 
k･(p#1) (mod p)= ay･(a 

(p#1))k = ay･1k = ay



 Some Maths: Euler’s Theorem
Let p be a prime number. 

Theorem: For any number a $ 0 : a(p
 
#1)(q

 
#1) = 1 (mod pq) . 

Let p and q be two distinct prime numbers. 

Corollary: If x = y (mod (p#1)(q#1)), then for any a :
ax = ay (mod pq) . 

Theorem: For any number a $ 0 :  ap
 
#1 = 1 (mod p) . 

Corollary: If x = y (mod p#1), then for any a :
ax = ay (mod p) . 



Choose large (300-digits) prime numbers p and q.
Compute n = pq (easy to do). 
Let e be a (almost) arbitrary number, e.g. e = 3.

Set pk = (n,e) and sk = (p,q,e), and

Epk(a) = ae  (mod n)   (easy when given pk).

Given sk = (p,q,e), one can compute d such that

de = 1 (mod (p#1)(q#1))   (ext. Euclid alg.)

 A Real Example of a TWOF: RSA

and then
Epk(a)d = (ae)d = ade = a1 = a  (mod n)



Choose large (300-digits) prime numbers p and q.
Compute n = pq (easy to do). 
Let e be a (almost) arbitrary number, e.g. e = 3.

Set pk = (n,e) and sk = (p,q,e), and

Epk(a) = ae  (mod n)   (easy when given pk).

Given sk = (p,q,e), one can compute d such that

de = 1 (mod (p#1)(q#1))   (ext. Euclid alg.)

 A Real Example of a TWOF: RSA

and then
Epk(a)d = (ae)d = ade = a1 = a  (mod n)

Easy to 
compute when 

given n.

Easy to 
compute when 
given p & q.

Seemingly hard 
to compute knowing only n, 

but not p & q.



Designing TOWF’s / public-key encryption schemes 
is a very challenging task. 

1976: Diffie & Hellman introduced the concept

1978: First example (RSA), by Rivest, Shamir & Adleman
       (actually, by Clifford Cocks (GCHQ) in 1973)

1985: ElGamal encryption scheme, and elliptic-curve crypto

1996: Lattice-based schemes (“post-quantum crypto”)

 Finding TOWF’s

protects security of internet
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 Digital Signatures
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 Digital Signatures

Properties:
Only Bob can produce a valid signature, 
but everybody can verify it.
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 Public Verifiability
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 Internet Security

ALICE

Certification authorities (CA)

Public keys of CA‘s 
are hard-coded into 
browser



(Public-key) cryptography offers powerful tools 

together with good understanding of their security

 Final Remarks

But: 
applying these tools correctly is often non-trivial
right key-management is crucial and tricky
the strongest lock is useless if not used properly 


