CRYPTOGRAPHY

Part I:
 Public-Key Cryptography

Serge Fehr
CWI Amsterdam
www. Cwi.nl/~fehr

Information...

has become a valuable resource
is the business model of many companies (G, f etc.)
is nowadays almost always digitalized
-> allows for easier use, but also for easier misuse
needs to be protected

Cryptography...

is the mathematical study of info-protecting techniques
\& provides tools for protecting information
provides a rigorous understanding of

- what security these tools achieve
- what security these tools do not achieve
θ is used in daily life by everybody - maybe unwittingly

Secure Communication

Solution: Encryption

Solution: Encryption

Solution: Encryption

"Dictionary"

= electronic file / data: $m \in \mathcal{M}$
= en- \& decryption key: $k \in \mathcal{K}$
= encryption function/procedure: $E_{k}: \mathcal{M} \rightarrow \mathcal{C}$ with corresponding decryption function: E_{k}^{-1}
\% \& X * \# O@i] g>n\&a1Y?x g>n\&a1Y?
$+d \# \& 1 \$ \$ Z)$ +*\&IO3@v.
.........

$\% \mathrm{~h}=\#$ §I\&X@

> = encrypted file (= ciphertext): $c=E_{k}(m)$ and: $m=E_{k}^{-1}(c)$

A (Even More) Mechanical View on Encryption

A (Even More) Mechanical View on Encryption

Need:

1. Alice \& Bob know

Problem

But what if Alice \& Bob have no common secret key ?

Problem

But what if Alice \& Bob have no common secret key ?

Sending the key from, e.g., Bob to Alice does not work, since then Eve learns it as well...

A Mechanical Solution

A Mechanical Solution

A Mechanical Solution

Towards a Digital Solution

In Technical Terms

We need:
Encryption function $E_{p k}$, which depends on public-key $p k$, such that when given $p k$ (only):

1. evaluating $E_{p k}(m)$ (on any m) is "easy", and
2. inverting $E_{p k}$, i.e., computing m from $E_{p k}(m)$, is "hard".

With the help of a trapdoor, the secret-key $s k$, inverting $E_{p k}$ becomes "easy".

Is called a trapdoor one-way function (TOWF).

An "Toy Example" of a TOWF

$p k=$ English-to-Swahili dictionary (i.e. with the English entries sorted)
$s k=$ Swahili-to-English dictionary (i.e. with the Swahili entries sorted)
$E_{p k}(m)=$ translation of (English text) m into Swahili
Given $p k=:$

1. translating into Swahili (= computing $E_{p k}(m)$) is easy,
2. translating back into English (= inverting $E_{p k}$) is hard.

Yet with the help of
$=$, the latter becomes easy.

Some Maths: Modular Arithmetic

modulus

Formally: $a=b(\bmod n)$ if $a=b+k \cdot n$ for some k.
Examples: Set $n=11$.

- $5+8=13=2(\bmod 11)$
- $5 \cdot 8=40=7(\bmod 11)$
- $2 \cdot 7+9=14+9=23=1(\bmod 11)$

$$
\text { or } \quad=3+9=12=1(\bmod 11)
$$

- $4^{3}=4 \cdot 4 \cdot 4=16 \cdot 4=5 \cdot 4=20=9(\bmod 11)$

Some Maths: Modular Arithmetic

Formally: $a=b(\bmod n)$ if $a=b+k \cdot n$ for some k.
Examples: Set $n=11$.

Why is this interesting?

- Numbers remain bounded in size
- Useful structure
- $4^{3}=4 \cdot 4 \cdot 4=16 \cdot 4=5 \cdot 4=20=9$

Some Maths: Fermat's Little Theorem

Let p be a prime number.
Theorem: For any number $a \neq 0: \quad a^{p-1}=1(\bmod p)$.
Examples: Let $p=5$ and $a=3$. Then

$$
\begin{array}{r}
3^{4}=3 \cdot 3 \cdot 3 \cdot 3=9 \cdot 3 \cdot 3=4 \cdot 3 \cdot 3 \\
\quad=12 \cdot 3=2 \cdot 3=6=1
\end{array}
$$

Corollary: If $x=y(\bmod p-1)$, then for any a :

$$
a^{x}=a^{y}(\bmod p) .
$$

Proof: $x=y(\bmod p-1) \Rightarrow x=y+k \cdot(p-1)$

$$
\Rightarrow a^{x}=a^{y+k \cdot(p-1)}=a^{y} \cdot\left(a^{(p-1)}\right)^{k}=a^{y} \cdot 1^{k}=a^{y} \quad(\bmod p)
$$

Some Maths: Euler's Theorem

Let p be a prime number.
Theorem: For any number $a \neq 0: \quad a^{p-1}=1(\bmod p)$.

Corollary: If $x=y(\bmod p-1)$, then for any a :

$$
a^{x}=a^{y}(\bmod p) .
$$

Let p and q be two distinct prime numbers.
Theorem: For any number $a \neq 0: a^{(p-1)(q-1)}=1(\bmod p q)$.

Corollary: If $x=y(\bmod (p-1)(q-1))$, then for any a :

$$
a^{x}=a^{y}(\bmod p q) .
$$

A Real Example of a TWOF: RSA

Choose large (300-digits) prime numbers p and q. Compute $n=p q$ (easy to do).
Let e be a (almost) arbitrary number, e.g. $e=3$.
Set $p k=(n, e)$ and $s k=(p, q, e)$, and

$$
\left.E_{p k}(a)=a^{e}(\bmod n) \quad \text { (easy when given } p k\right) .
$$

Given $s k=(p, q, e)$, one can compute d such that

$$
d e=1(\bmod (p-1)(q-1)) \quad(\text { ext. Euclid alg. })
$$

and then

$$
E_{p k}(a)^{d}=\left(a^{e}\right)^{d}=a^{d e}=a^{1}=a(\bmod n)
$$

A Real Example of a TWOF: RSA

Choose large (300-digits) prime numbers p and q. Compute $n=p q$ (easy to do).
Let e be a (almost) arbitrary num
Easy to compute when
Set $p k=(n, e)$ and $s k=(p, q, e)$, ' given n.
Seemingly hard to compute knowing only n, but not p \& q.
(easy when given $p k$).
(1 - $1(q-1)$)
Easy to compute when given $p \& q$.
and then

$$
E_{p k}(a)^{d}=\left(a^{e}\right)^{d}=a^{d e}=a^{1}=a(\bmod n)
$$

Finding TOWF's

Designing TOWF's / public-key encryption schemes is a very challenging task.

1976: Diffie \& Hellman introduced the concept protects security of internet
1978: First example (RSA), by Rivest, Shamir \& Adleman (actually, by Clifford Cocks (GCHQ) in 1973)

1985: ElGamal encryption scheme, and elliptic-curve crypto
1996: Lattice-based schemes ("post-quantum crypto")

Digital Signatures

Digital Signatures

Digital Signatures

Digital Signatures

Public Verifiability

Public Board:

Owner: BOB

Public Verifiability

Internet Security

Internet Security

Certification authorities (CA)

Internet Security

Entrust
 Securing Digital Identities
 \& Information
 प्रवाgicert

Certification authorities (CA)

Internet Security

Public keys of CA's are hard-coded into browser

Certification authorities (CA)

Final Remarks

\& (Public-key) cryptography offers powerful tools
together with good understanding of their security
\otimes But:

- applying these tools correctly is often non-trivial
- right key-management is crucial and tricky
- the strongest lock is useless if not used properly

