

Conformational Analysis 3D Structures, Conformations and Molecular Surfaces

Christof H. Schwab

Molecular Networks GmbH Henkestr. 91 91052 Erlangen, Germany

mn-am.com

Altamira LLC 1455 Candlewood Drive Columbus, Ohio 43235, USA

Molecular Networks and Altamira MN-AM

Erlangen, Germany Friedrich-Alexander-Universität 1997

Columbus, Ohio, USA The Ohio State University 2008

Chemoinformatics

- > 3D structure generation
- > Physicochemical and reaction properties
- > Metabolic reaction knowledge
- Computational toxicology and risk assessment
 - Database and knowledgebase
 - > Predictive models
 - Consulting services

Product Lines – Chemoinformatics

- CORINA Classic
 - Industry-standard 3D structure generation
- CORINA Symphony
 - Profiling and managing of chemical datasets
 - > Workflows
 - Structure cleaning/processing
 - Descriptor generation (properties and fragments)
- SYLVIA
 - Estimation of synthetic accessibility of compounds
- Public tools
 - ChemoTyper (with ToxPrint Chemotypes)
 - https://chemotyper.org, https://toxprint.org

Product Lines – Computational Toxicology and Risk Assessment

ChemTunes

- Platform to support decision making in human health and regulatory critical endpoints
 - Toxicity database (all endpoints)
 - "Inventory" concept for compound location

ChemTunes ToxGPS

- Prediction models
 - All human health related endpoints
- > Workflows
 - TTC (thresholds of toxicological concern)
 - Read-Across (in development)
 - ICH M7 GTI (in development)

ChemTunes

3D Structures, Conformations and Molecular Surfaces – Overview

- 3D structures why, where needed and how many
- 3D structure generation
 - Single 3D structures and conformational ensembles
 - > Methods, approaches, applications
- Storage of 3D structures
 - Examples of file formats
- Molecular surfaces
 - Approaches, application

References

3D Structures – For What?

- Chemists' language
 - 2D structure diagrams
 - Stereochemistry
- Molecules are 3-dimensional objects
 - > Spatial interactions of molecules cause effects

3D Structures – Where needed?

- 3D database generation
- Lead discovery and lead optimization
 - Ligand- and structure-based virtual screening
 - Docking studies, pharmacophore and similarity searching
- Prediction of chemical, physicochemical and biological properties
 - > ADMET properties
 - QSAR and QSPR studies
- Structure elucidation
- Prediction of chemical reactivity
- Input to quantum-mechanical and force field calculations

Chemical Structures – How many?

- The Cambridge Crystallographic Database (CSD)
 - Over 850,000 experimentally-determined crystal structures
- PubChem
 - > 82 Million characterized chemical compounds
- Chemical Abstract Service, CAS Registry
 - 121 Million unique organic and inorganic chemical substances
- GDB, University of Berne
 - ➢ GDB-13, 1 Billion compounds (13 atoms, C, O, N, S, and Cl)
 - GDB-17, 164 Billion compounds (17 atoms, C, O, N, S, and halogens)
- RCSB Protein Data Bank, PDB
 - > 123,000 biological macromolecular structures
 - 21,000 ligand structures

Automatic 3D Structure Generators

Categories of 3D molecular model building approaches

- No sharp borders between approaches
 - > Fragment-based methods require rules
 - Rule- and data-based methods use 3D templates
 - Numerical methods require starting geometries

3D Structure Generators

- Fragment-based methods
 - Fragment, select appropriate 3D template, link
 - Minimum set of rules for fragmentation, analog searching and linking
- Rule- and data-based methods
 - > Knowledge base from theoretical investigations and experimental structures
 - Explicit rules and implicit data
- Numerical methods
 - > Molecular force field calculations
 - Quantum-mechanical methods
 - Semi-empirical, DFT and ab initio
 - Distance geometry

3D Structure Generators – General Issues (1/3)

- Different conformational behavior of cyclic and acyclic portions
- Ring systems with limited degrees of freedom

Use of "allowed" low-energy ring templates

- Open-chain structures with increasing number of degrees of freedom with increasing number of rotatable bonds
 - Selection of low-energy conformation
 - Principle of longest pathways

3D Structure Generators – General Issues (2/3)

- Stereochemistry awareness
 - Tetrahedral chiral centers and cis/trans double bonds
 - Coded in input structure
- Close contacts and steric crowding
 Mechanisms to eliminate such situations
- Conformational analysis
 - Several conformations to identify a low-energy one

NH

1 st

3D Structure Generators – General Issues (3/3)

Processing of large amounts of data

- > Millions of structures in (company) databases
- Robustness
- > CPU times
- High conversion rates
- > Handling of broad range of chemical spaces
- Quality of 3D models
 - Close contacts and steric crowding
 - Reproduction of experimentally determined geometries

Fragment-based Methods

- Fragment the structure
 - Rules for fragmentation
- Select appropriate 3D template
 Library of 3D templates
- Link 3D templates
 - Rules for linking
- Rules and data required

N,N-dimethyl-benzamide

Rule and Data-Based Methods

- Knowledge base from theoretical investigations and experimental structures
- Explicit and implicit rules and data
 - Standard bond lengths and angles
 - Preferred torsion angles
 - Ring templates
 - > Empirical (fast) energy estimation
 - Increments for ring templates

CORINA Classic

CORINA Classic

- **Ring templates**
 - Smallest set of smallest rings

CORINA Classic

Macrocyclic structures
 Principle of superstructure

2D structure

Superstructure

3D model

CORINA Classic – Application

Conversion of National Cancer Institute (NCI) database

Number of structures	265,242
Structures converted	263,184
Structure coding errors in DB	543
Conversion rate	99.43%
> CPU time	0.5 h
(x86 Linux, 1.5 GHz)	(1,843 s, 0.007 s/molecule)

CORINA Classic – Key Features

- Support of a variety of chemical file formats
 - SDF, RDF, SMILES, PDB, SYBYL MOL and MOL2, MacroModel, Maestro, CIF,...
- Generation of multiple ring conformations
 - Data-based for rings consisting of up to nine atoms
 - Interface to docking program FlexX
- Generation of stereo isomers
 - > Automatic detection of stereo centers (tetrahedral and cis/trans)
 - > Full/partial enumeration, preserve defined centers, duplicate detection
- Structure "clean-up" features
 - Adding H atoms, neutralizing formal charges, atom and bond type assignment, stereo information, removal of counter ions in salts, ...

CORINA Classic Interfaces

- Command line interface and library version
 - Linux shared object and Windows DLL

Pipeline Pilot component

KNIME node

Numerical Methods

- Molecular force field calculations
- Quantum-mechanical methods
 - > Semi-empirical
 - > DFT
 - ab initio
- (Distance geometry)

Classical mechanical treatment of molecules

- Composed of masses: atoms
- > Connected by springs: bonds
- Potential energy by Hooke's law

Born-Oppenheimer approximation

- Separation of movement of electrons from much slower movement of nuclei
- Potential energy of molecule as function of atomic coordinates

$$V(r) = \frac{k}{2}(r - r_0)$$

Two major parts

- Functional form (mathematics)
- Parametrization and atom typing
- Not a single, "true" mathematical expression
 - Different functional forms can be applied
- Different sets of parameters and atom types
 - Derived from experimental results
 - Represent thermodynamic average (rather than a particular geometry)

\Rightarrow Empirical method

Functional form

- Calculation of potential energy
- Optimization of energy depending on atom coordinates
- Bonded and non-bonded contributions

Atom typing

- Differentiation between hybridization state, local environment, special conditions (e.g., strained ring)
- > Depending on application

Parametrization

The more atom types, the more parameters for contributions/terms in energy function required

$$V = \sum V_{bonds} + \sum V_{angles} + \sum V_{torsions} + \sum V_{electrostatic} + \sum V_{vanderWaals}$$

Force Fields – Applications

Conformational analysis

> Studying different conformations of a molecule

- > Structure refinement using experimental data
- Molecular properties

Heats of formation

Used in molecular dynamics simulations

Some Force Fields and Programs (1/2)

- MM2/MM3/MM4 (Allinger, University of Georgia)
 - Small molecules, peptides, proteins
- UFF (Rappé, Goddard III, Colorado State University)
 - > Mainly small molecules, generic force field for "whole periodic table"
- AMBER (Kollman, University of California San Francisco)
 - Biomolecules including solvation effects (water models TIP3/4P, SPC, POL3,...)
- CHARMM Karplus, Harvard University)
 - Macromolecular simulations, molecular dynamics
- GROMOS (van Gunsteren, Berendsen, University of Groningen)
 - Molecular dynamics, aqueous or apolar solutions, lipid systems

Some Force Fields and Programs (2/2)

MMFF (Halgren, Merck and Co, Inc)

Optimized to handle functional groups relevant in pharma

Vendors

- > BIOVIA (Accelrys)
- Chemical Computing Group
- > Schrödinger

Free/open source

- Open Babel
- > RDKit

Quantum Mechanical Approaches

Solving the molecular Schrödinger equation

- $\blacktriangleright \hat{H}\Psi = E\Psi$
- > Energy as a function of the electronic wave function
- Three main categories according to level of theory
 - > Semi-empirical molecular orbital (MO) theory
 - > Density functional theory
 - > Ab initio MO theory
- Computationally expensive
 - Semi-empirical < DFT < ab initio</p>

Quantum Mechanical Approaches

General principles

- Electronic structure of molecule (built by atoms) as basis
- Linear combination of atomic orbitals (LCAO) approximation to derive molecular orbital
- > Hartree-Fock (HF) and self-consistent field (SCF) approximation
 - Each electron interacts with mean field of all other electrons
- Semi-empirical methods
 - Parametrization of (some) terms using data from experimental data
 - Neglecting/approximation of (some) interaction terms

Output of Quantum Mechanical Calculations

- Net atomic charges
- Dipole and higher multipole moments

Valuable for modelling

of chemical reactivity

and toxicity endpoints

- Polarizabilities
- Orbital energies
 HOMO/LUMO
- Heat of formation _
- Surface descriptors
- Local ionization potential
- Atomic coordinates

Molecule orbitals of phenylalanine (HOMO/LUMO)

Quantum Mechanical Program Packages

GAUSSIAN

> Molecular mechanics, semi-empirical methods (AM1, PM3, ...), ab initio

- MOPAC
 - Semi-empirical methods, AM1, PM3, ...
- Spartan

Molecular mechanics, semi-empirical methods, ab initio models, DFT, ...

Hyperchem

> Molecular mechanics, molecular dynamics, semi-empirical and ab initio methods

- EMPIRE
 - Semi-empirical methods

Conformational Sampling

- Generate set of diverse conformations
- Biologically relevant conformations in drug discovery
 - Bioactive conformation
 - Conformation in receptor-bound state
- General case of 3D structure generation
- Applications, e.g.,
 - > Docking
 - Pharmacophore searching

Conformational Sampling – General Workflow

Identification of rotatable bonds

- Flexible ring systems
- Open-chain portions
- Generation of conformations
 - > Application of implemented algorithm
 - > Avoidance of "un-favorable" conformations
 - Combinatorial explosion

Conformational Sampling – General Workflow

- Checking for duplicates and very similar conformations
 - > Inter-conformational distances in Cartesian space
 - Root mean square deviation (RMSD_{XYZ})
- Selection of a set of representative conformations
 - Subsampling
 - E.g., clustering in Cartesian space
 - Ideally done in one of previous steps to bias search towards area of application

Conformational Sampling – Methods

Rule- and data-based, fragment-based methods
 Empirical and fast

Systematic searches

- Exhaustive, e.g., grid searches
- Combinatorial explosion
- Random methods
 - Random change of Cartesian or internal coordinates
 - Subsequent optimization

Conformational Sampling – Methods

Genetic algorithms

- > Robust optimizers
- > Torsion angles as genes
- > Mutation/crossover operators

- Simulation methods
 - Molecular dynamics
 - Simulated annealing

Conformer Generator ROTATE Classic

Hybrid approach

Systematic search

Torsion angle distributions in small molecule crystal structures

Empirical energy function $E(\tau) = -A \ln f(\tau)$

Conformer Generator ROTATE Classic

Superimpositions of experimentally determined receptor-bound geometries and ROTATE-generated models with smallest RMS_{xyz}

Available Methods

- CatConf/ConFirm
 - Accelrys/Biovia
- CEASAR
 - Accelrys/Biovia
- CORINA Classic and ROTATE Classic
 - Molecular Networks
- OMEGA
 - > OpenEye
- CONCORD/CONFORT
 - Tripos/Certara

MOE

Chemical Computing Group

- MacroModel/ConfGen
 Schrödinger
- Free/open source
 - > Open Babel
 - > RDKit

Storage of 3D Structures

Various standard chemical file formats

- Cartesian (x,y,z) coordinates
 - > Molfile, SD file
 - > SYBYL MOL/MOL2
 - > PDB
- Internal coordinates
 - Crystallographic file formats, e.g., CIF
 - (Z matrix)

Storage of 3D Structures

Cartesian coordinates

	Х	У	Z
C1	-0.0127	1.0858	0.0080
H1	0.0021	-0.0041	0.0020
H2	1.0099	1.4631	0.0003
HЗ	-0.5399	1.4469	-0.8751
H4	-0.5229	1.4373	0.9048

Internal coordinates

SD V2000

L-alanine

7	6	0	0	0	0	0	0	0	09	999	V20	00	
-	0.0	184		1.	502	8	0	.010)3	С	0	0	C
	0.0	021		-0.	004	1	0	.002	20	С	0	0	C
-	0.7	002		-0.	530	5	1	.255	52	С	0	0	C
	1.0	197		2.	121	1	0	.003	37	0	0	0	C
-	1.1	898		2.	158	0	0	.019	94	0	0	0	C
	1.3	935		-0.	474	8	-0	.013	38	Ν	0	0	C
-	0.5	153		-0.	369	6	-0	.885	50	Η	0	0	С
1	2	1	0	0	0	0							
2	3	1	0	0	0	0							
1	4	2	0	0	0	0							
1	5	1	0	0	0	0							
2	6	1	0	0	0	0							
2	7	1	1	0	0	0							
Ε	ND												

М

SYBYL MOL/MOL2 File

SYBYL MOL2 file with atom typing

•						
L-alan	ine					
7	6	0	0	0		
SMALL						
NO_CHAI	RGES					
@ <trip< td=""><td>OS>AT</td><td>MO</td><td></td><td></td><td></td><td></td></trip<>	OS>AT	MO				
1 C.	1		-0	.0184	1.5028	0.0103 C.2
2 C.	2		0	.0021	-0.0041	0.0020 C.3
3 C.	3		-0	.7002	-0.5305	1.2552 C.3
4 O-	4		1	.0197	2.1211	0.0037 0.2
5 0.	5		-1	.1898	2.1580	0.0194 0.3
6 N	6		1	.3935	-0.4748	-0.0138 N.3
7 H	7		-0	.5153	-0.3696	-0.8850 H
@ <trtp< td=""><td>OS>BO</td><td>ND</td><td></td><td></td><td></td><td></td></trtp<>	OS>BO	ND				

KILOS/D

@<TRIPOS>MOLECULE

	1	1	-	2	1	
	T	T	2	<u>_</u>	Т	
	2	1	Ľ,	1	2	
	3	1	5	5	1	
	4	2	(.)	3	1	
	5	2	6	5	1	
	6	2	-	7	1	
#			End	С	f	record

(Brookhaven) Protein Data Bank File

Example

HEADER	UN	K						16-10	-19	1UNK	
COMPND	L-	alan	ine								
REMARK											
HETATM	1	C1	UNK	1		-0.018	1.503	0.010	1.00	20.00	0
HETATM	2	C2	UNK	1		0.002	-0.004	0.002	1.00	20.00	0
HETATM	3	C3	UNK	1		-0.700	-0.531	1.255	1.00	20.00	
HETATM	4	04	UNK	1		1.020	2.121	0.004	1.00	20.00	
HETATM	5	05	UNK	1		-1.190	2.158	0.019	1.00	20.00	0
HETATM	6	NG	UNK	1		1.394	-0.475	-0.014	1.00	20.00	
HETATM	7	H7	UNK	1		-0.515	-0.370	-0.885	1.00	20.00	
CONECT	1	2	4		5						
CONECT	2	1	3		6	7					
CONECT	3	2									-
CONECT	4	1									
CONECT	5	1									
CONECT	6	2									
CONECT	7	2									
END											

OH

H NH2

Crystallographic Information File

CIF file with internal coordinates

> Parameters for refinement of X-ray structures

<keywords for connectivity> 'C1' 'C2' UNK n/a START 'C1' 'C2' 'C3' UNK ••• 'H7' 'C2' UNK END <keywords for bonds> 'C1' 'C2' UNK single 1.507 0.020 double 1.208 UNK 'C1' '04' 0.020 ... <keywords for bond angles> 'C2' 'C1' '04' 120.000 UNK 3.000 UNK 'C2' 'C1' '05' 120.000 3.000 ••• <keywords for torsion angles> var 000 '04' 'C1' 'C2' 'C3' 120.000 20.0000 UNK

6

Z Matrix

Input to quantum mechanical programs

C1						
C2	1.5	1				
C13	1.7	1	109	2		
H4	1.1	2	109	1	-60	3
Н5	1.1	1	109	2	180	4
Cl6	1.7	2	109	1	60	5
H7	1.1	1	109	2	-60	6
Н8	1.1	2	109	1	180	7

Molecular Surfaces

Interaction between molecules mediated through surface (properties)
 Electrostatic, hydro/lipophilicity, H-bond donor/acceptor potential

- Common 3D surface models
 - van der Waals surface
 - Conolly surface
 - Solvent-accessible surface (SAS)
- 2D approaches
 - Topological polar surface area
 - Approximate surface area

van der Waals Surface

- Simplest representation of molecular surface
 - > Hard-sphere model

Μ

- Determined from van der Waals radii of each atom
 - Correction by energetically-favorable distance on non-bonded atoms

Conolly Surface

- Smoother surface (than van der Waals)
 - "Rolling" a probe sphere (e.g., solvent molecule) over van der Waals surface
 - Water molecule with effective radius of 1.4 Å
 - Convex contact surface
 - Convex re-entrant surface where probe contacts two or more atom spheres

Solvent Accessible Surface

- Similar to Conolly surface, but center of probe sphere defines surface
 - > Molecular surface that a solvent molecule can access
 - > Conolly molecular surface extended by effective radius of solvent molecule

2D Approaches for Surfaces

- Topological polar surface area (Ertl et al., 2000)
 - > Estimation of polar surface area by sum of contributions of 2D polar fragments
 - Contribution derived by fitting of fragment-based TPSA to 3D polar surface area
 - Based on 39,000 drug molecules
 - 43 fragments
 - r² of 0.98 and average error of 5.6 Å

Fragment	PSA	Frequency	
NR ₃	3.24	0	
NHR ₂	12.03	1	
NH ₂ R	26.02	0	
R-O-R	9.23	0	1P3A. 49.3 A
R-O-H	20.23	1	
C=0	17.07	1	

2D Approaches for Surfaces

- Approximate surface area (Labute, 2000)
 - van der Waals radii and ideal bond length
 - Geometrical considerations to approximate overlap of spheres and remaining "free" surface
 - 1,947 molecules
 - r^2 of 0.96 and average error <10%

Molecular Surface Descriptors

QSAR experiments

- > Molecular descriptors independent of size and number of atoms of molecules
- Invariant against translation and rotation of molecules
- Fixed numbers of descriptors for each molecule in data set

Autocorrelation of surface properties

- Calculation of e.g. electrostatic potential for points on molecular surface
- Application of autocorrelation formalism
 - Sampling of pairwise surface property points in equidistant intervals

 $A(d_n) = \frac{1}{2L} \sum_{i=1}^{n} p_i p_j$

Application – Differentiating Drug Space

Dataset of 207 drugs from five different pharmacological actions

- > 56 ACE inhibitors (ACE)
- 49 COX inhibitors (COX)
- 38 folic acid antagonists (FOL)
- 11 HMG-coA reductase inhibitors (HMG)
- 53 monoamine oxidase inhibitors (MAO)
- Most similar COX and MOA
 - Common structural features

COX

O,C.N

Application – Differentiating Drug Space

- 116 CORINA Symphony descriptors
 - Global molecular properties
 - # H bond acceptors and H bond donors, TPSA, molecular weight, dipole moment, molecular polarizability, logP and logS
 - 3D autocorrelation vectors using partial charges, electronegativities and polarizabilities as atom pair properties
 - Autocorrelation of surface properties using molecular electrostatic, hydrogen bonding and hydrophobicity potential

Unsupervised Classification

Kohonen map trained with CORINA Symphony descriptors

207 compounds 116 descriptors 15x10 neurons rectangular

Acceptable separation of classes

- > Only 5 conflict neurons
- > Only 4 of 10 possible class collisions

CORINA Classic – Online Service

Calculation of 3D structures

https://www.mn-am.com/online_demos/corina_demo_interactive

CORINA Symphony CE – Online Service

- Calculation of molecular properties and descriptors
 - https://www.mn-am.com/services/corinasymphonydescriptors

MN AM	PRODUCTS = NEWSroom = DOWNLOADS	enter keywords	Q OUTus =
Web Service - CORINA Symph	ony Descriptors Comm	iunity Editio	n
If you would like to use our CORINA Symphony Descriptors Comm submission.	nunity Edition web service please use the follow	wing form for data	
Please select input structure file and options: Browse No file selected.		ORINA	
Use 3D structures provided in input file		mpnony	
Note. Only SDF and SMILES formatted files are supported and the file siz	e limit is 1 MB.		
Please press the Submit button to upload the file and for calculating des	criptors.		
Submit			

Acknowledgements

BigChem project
 Barbara Gasset, Igor Tetko

- My colleagues at MN-AM
 - Aleksandra Mostrag-Szlichtyng, Chihae Yang, Vessela Vitcheva, Aleksey Tarkhov, Bruno Bienfait, James Rathman, Jörg Marucszyk, Oliver Sacher, Thomas Kleinöder, Tomasz Magdziarz, Vijay Gombar
- Thank you for your attention!
- www.mn-am.com

Selected References

Databases

- Cambridge Crysatllographic Database
 - Allen, F. H.; Kennard, O. Acc. Chem. Res., 1983, 16, 146. c) Allen, F.H.; Hoy, V.J. Cambridge Structural Database. In Encyclopedia of Computational Chemistry, Schleyer, P.v.R.; Allinger, N.L.; Clark, T.; Gasteiger, J.; Kollman, P.A.; Schaefer, III, H.F.; Schreiner, P.R. (Eds.), John Wiley & Sons, Inc., Chichester, UK, **1998**; pp. 155-167.
 - http://www.ccdc.cam.ac.uk/
- The PubChem project
 - https://pubchem.ncbi.nlm.nih.gov
- RCSB Protein Data Bank
 - http://www.rcsb.org/pdb/home/home.do

- 3D structure and conformation generators
 - Sadowski, J.; Gasteiger, J.; Klebe, G. Comparison of Automatic Three-Dimensional Model Builders Using 639 X-Ray Structures. J. Chem. Inf. Comput. Sci. **1994**, 34, 1000-1008.
 - Schwab, C.H., Representation of 3D Structures. In Chemoinformatics A Textbook, J. Gasteiger and T. Engel, Eds., Wiley-VCH, Weinheim, 2003, 91-124.
 - Sadowski, J. Representation of 3D Structures. In Handbook of Chemoinformatics - From Data to Knowledge, J. Gasteiger, Ed., Vol. 1, Wiley-VCH, Weinheim, 2003, 231-261.
 - Schwab, C.H. Conformational Analysis and Searching. In Handbook of Chemoinformatics - From Data to Knowledge, J. Gasteiger, Ed., Vol. 1, Wiley-VCH, Weinheim, 2003, 262-301.

- 3D structure and conformation generators (cont.)
 - Renner, S.; Schwab, C.H.; Schneider, G.; Gasteiger, J. Impact of conformational flexibility on three-dimensional similarity searching using correlation vectors. J. Comp. Inf. Model. 2006, 46, 2324-2332.
 - Schwab, C.H. Conformations and 3D pharmacophore searching. Drug Discovery Today: Technologies, Volume 7, Issue 4, Winter 2010, e245-e253.

- Force field calculations
 - Leach A.R. Molecular Modelling: Principles and Applications. Prentice Hall, 2nd Edition, 2001.
 - Lanig, H. Molecular Mechanics. In Chemoinformatics A Textbook, J. Gasteiger and T. Engel, Eds., Wiley-VCH, Weinheim, 2003, 338-358.
 - Lanig, H. Molecular Mechanics. in Handbook of Chemoinformatics From Data to Knowledge, J. Gasteiger, Ed., Vol. 3, Wiley-VCH, Weinheim, 2003, 920-946.

- Quantum mechanical calculations
 - Leach A.R. Molecular Modelling: Principles and Applications. Prentice Hall, 2nd Edition, 2001.
 - Clark, T. Quantum Mechanics. In Chemoinformatics A Textbook, J. Gasteiger and T. Engel, Eds., Wiley-VCH, Weinheim, 2003, 376-400.
 - Clark, T. Quantum Mechanics. In Handbook of Chemoinformatics From Data to Knowledge, J. Gasteiger, Ed., Vol. 3, Wiley-VCH, Weinheim, 2003, 947-975.
- Structure representation and chemical file formats
 - Engel, T. Representation of Chemical Compounds. In Chemoinformatics A Textbook, J. Gasteiger and T. Engel, Eds., Wiley-VCH, Weinheim, 2003, 15-90.

- Structure representation and chemical file formats (cont.)
 - SD File format
 - Dalby, A. et al. Description of Several Chemical Structure File Formats Used by Computer Programs Developed at Molecular Design Limited. J. Chem. Inf. Comput. Sci. 1992, 32, 244-255.
 - http://accelrys.com/products/informatics/cheminformatics/ctfile-formats/no-fee.php
 - PDB file format
 - Bernstein, F. C. et al. The Protein Data Bank: A Computer-Based Archival File for Macromolecular Structures. J. Mol. Biol. 1977, 112, 535-542.
 - http://www.wwpdb.org/documentation/file-format
 - CIF format
 - Hall, S.R. et al. The Crystallographic Information File (CIF): a New Standard Archive File. Acta Cryst. 1991, A47, 655-685.

Molecular surfaces

- Engel, T. Representation of Chemical Compounds. In Chemoinformatics A Textbook, J. Gasteiger and T. Engel, Eds., Wiley-VCH, Weinheim, 2003, 124-129.
- Connolly M.L. Analytical molecular surface calculation. J. Applied Crystallogr. 1983, 16, 548-558.
- Zhao, Y.H.; Abraham; M.H.; Zissimos, A.M. Determination of McGowan Volumes for lons and Correlation with van der Waals Volumes. J. Chem. Inf. Comp. Sci. 2003, 43, 1848-1854.
- Ertl, P; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Tansport Properties. J. Med. Chem. **2000**, 43, 3714-3717.
- Labute, P. A widely applicable set of descriptors. J. Mol. Graph. Mod. 2000, 18, 464-477.

Neural networks

- Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug Design. Second Edition, Wiley-VCH, Weinheim, **1999**, 380 pages.
- Zupan, J.; Gasteiger, J. Neural Networks in Chemistry. Angew. Chem. Int. Ed. Engl. 1993, 32, 503-527.
- Terfloth, L.; Gasteiger, J. Self-organizing Neural Networks in Drug Design. Screening - Trends in Drug Discovery 2001, 2(4), 49-51.

