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Big Data Sources

Do	we	really	have	Big	Data	in	chemistry?	
What	kind	of	large	data	do	we	have?		



Big Data definition

Big	data	is	a	term	for	data	sets	that	are	so	large	or	
complex	that	tradi?onal	data	processing	applica?ons	

are	inadequate	(Wikipedia)	
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Data Types

Database	 Main data types	

ChEMBL v. 211	 Data mined from literature and PubChem	HTS assays	

BindingDB2	 Experimental protein-small molecule interaction data	

PubChem3	 Bioactivity data from HTS assays	

Reaxys4	 Literature mined property, activity and reaction data 	

SciFinder (CAS)5	 Experimental properties, 13C and 1H NMR spectra, reaction data	

GOSTAR6 	 Target-linked data from patents and articles	

AZ IBIS7	 AZ in-house SAR data points	

OCHEM8	 Mainly ADMET data collected from literature	

1)	Papadatos	G,	et	al.	J	Comput	Aided	Mol	Des	2015;29(9)885-96.	
2)	Gilson	MK,	et	al.	Nucleic	Acids	Res	2016;44(D1):D1045-53.	
3)	Kim	S,	et	al.	Nucleic	Acids	Res	2016;44(D1):D1202-13.	
4)	h^p://www.elsevier.com/solu?ons/reaxys	
5)	h^p://www.cas.org/products/scifinder	
6)	h^p://www.gostardb.com	
7)	Muresan	S	et	al.	Drug	Discov	Today	2011;16(23-24):1019-30.	
8)	Sushko	I,	et	al..	J	Comput	Aided	Mol	Des	2011;25(6):533-54.	



Big Data sizes
Big	data	is	a	term	for	data	sets	that	are	so	large	or	complex	that	tradi?onal	
data	processing	applica?ons	are	inadequate	(Wikipedia)	

CC	BY-SA	3.0,	h^ps://commons.wikimedia.org/w/index.php?curid=29452425	

1	exabyte:	
1018	
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Big Data are relative to a field

•  Methods	to	analyze	such	data	do	not	exist	
•  We	may	not	sufficient	technical	resources	(speed,	memory)	to	

use	the	exis?ng	methods	
•  We	may	not	have	knowledge	to	use	the	exis?ng	methods	
	
Thus	the	Big	Data	can	appear	due	to:	
	
Physical	challenges	(hardware)	
Knowledge	challenges	(informa?cs,	sogware)	



Example of Big Data

Which	data	are	really	big	ones?		



What data sizes are “big” ones?

	
“General	mel?ng	point	predic?on	based	on	a	diverse	compound	data	set	and	
ar?ficial	neural	networks”	Karthikeyan	et	al.	J.	Chem.	Inf.	Model.	2005,	45(3),	
681-90.	N	=	4173		

à  Large	data	set	~50k		
à  Big	data	set	~250k	
	
	



Melting Point Datasets

•  Bergström	277	
•  Bradley					2886	
•  OCHEM					22404	
•  Enamine			21883	

data	

Bergström	

Bradley	

OCHEM	

Enamine	

Tetko	et	al	J.	Chem.	Inf.	Model.	2014,	22;54(12):3320-9.	



275k Melting Point Datasets

•  Bergström	277	
•  Bradley					2886	
•  OCHEM					22404	
•  Enamine			21883	
•  PATENTS			228079	

data 

Bergström 
Bradley 
OCHEM 
Enamine 
Patents 

Tetko	et	al	J.	Chemoinforma2cs,	2016,	8,	2.		

COMBINED:	OCHEM	+	Enamine	+	Bradley	+	Bergström		



Extraction of MP information from patents

•  [0835] To a solution of 2-amino-4,6-dimethoxybenzamide (0.195 g, 0.99 mmol) and 5-(2-
(tert-butyldimethylsilyloxy)ethoxy)-6-phenylpicolinaldehyde (0.355 g, 0.99 mmol) in N,N-
dimethyl acetamide (10 ml), was added NaHSO3 (0.264 g, 1.49 mmol) and p-toluenesulfonic 
acid monohydrate (0.038 g, 0.198 mmol). The reaction mixture was heated at 120° C. for 16 h. 
After that time the reaction was cooled to rt and the solvent was removed under reduced 
pressure. The reaction mixture was then diluted with water (150 mL) and neutralized with 
NaHCO3. The precipitated solids were collected by filtration, washed with water and dried to 
give 2-(5-(2-(tert-butyldimethylsilyloxy)ethoxy)-6-phenylpyridin-2-yl)-5,7-
dimethoxyquinazolin-4(3H)-one (0.500 g, 94%) as an off-white solid: 1H NMR (400 MHz, 
DMSO-d6) δ 11.08 (s, 1H), 8.35 (d, J=8.98 Hz, 1H), 8.21 (d, J=2.34 Hz, 2H), 7.82 (d, J=8.59 Hz, 
1H), 7.44-7.52 (m, 3H), 6.81 (d, J=2.34 Hz, 1H), 6.58 (d, J=2.34 Hz, 1H), 4.24-4.32 (m, 2H), 
3.94-4.00 (m, 2H), 3.92 (s, 3H), 3.86 (s, 3H), 0.85 (s, 9H), 0.08 (s, 6H); ESI MS m/z 534 [M+H]
+.

•  http://www.google.com/patents/US20140140956 



Extracting of melting points from patents

Workflow	

NextMove	Ltd,	UK	



Extraction of MP information from patents



Modeling of MP data

Package 
name	

Type of 
descriptors	

Number of 
descriptors	

Matrix size, 
billions	

Non zero 
values, 
millions	

Sparseness	

Functional 
Groups 	 integer	 595	 0.18	 3.1	 33	

QNPR	 integer	 1502	 0.45	 6.3	 49	

MolPrint	 binary	 688634	 205	 8.1	 7200	

Estate count	 float	 631	 0.19	 10	 14	

Inductive	 float	 54	 0.02	 11	 1	

ECFP4	 binary	 1024	 0.31	 12	 25	

Isida	 integer	 5886	 1.75	 18	 37	

ChemAxon	 float	 498	 0.15	 23	 1.5	

GSFrag	 integer	 1138	 0.34	 24	 5.7	

CDK	 float	 239	 0.07	 27	 2	

Adriana	 float	 200	 0.06	 32	 1.3	

Mera, Mersy	 float	 571	 0.17	 61	 1.1	

Dragon	 float	 1647	 0.49	 183	 1.5	



Large à Big

•  Neural	Networks	was	too	slow	(ensemble	training!)	
à	SVM	was	used	

•  Support	of	parallel	calcula?ons	(48	core)	
•  Support	of	grid	analysis	(>1000	CPUs)	

•  Storage	of	full	data	matrix	->	sparse	data	matrix	
	



Prediction errors for Bergström drug like compounds 
using models developed with different training sets
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Prediction of Huuskonen set using ALOGPS logP 
and MP based on 50k measurements

	
logS	=	0.5	–	0.01(MP-25)	–	log	Kow		



Prediction of Huuskonen set using ALOGPS logP 
and MP based on 230k measurements

	
logS	=	0.5	–	0.01(MP-25)	–	log	Kow		



Big Data Quality and Complexity

Why	is	it	very	important?	
How	domain	specific	analysis	could	help?	



Suscep?bility	of	CPM-based	HTS	to	screening	compound-based	interference.	(A)	Assay	schema?c	for	the	CPM-based	HTS	used	in	this	
study.	The	assay	measures	the	HAT	ac?vity	of	the	R^109–Vps75	complex,	which	catalyzes	the	transfer	of	an	acetyl	moiety	from	acetyl-CoA	
to	specific	lysine	residues	on	the	Asf1–dH3–H4	substrate	complex	to	produce	acetylated	histone	residues	and	coenzyme	A	(CoA).	Addi?on	
of	the	thiol-scavenging	probe	CPM	leads	to	a	highly	fluorescent	adduct	by	reac?ng	with	the	CoA	byproduct,	which	is	used	to	quan?fy	HAT	
ac?vity	via	fluorescence	intensity	measurement.	(B)	Representa?ve	assay	interference	chemotypes	iden?fied	during	post-HTS	triage.	

Dahlin	et	al	J.	Med.	Chem.		2015,	58,	2091-2113.	

99.8%	FHs!	



Promiscuous compounds filters



Promiscuous compounds filters



Pan Assay INterference compoundS (PAINS) 
Filters

•  color	quenching	
•  singlet	oxygen	quenching	
•  auto-fluorescence	
•  covalent	binding	
•  inherently	“s?cking”	

compounds	
•  disrupt	the	interac?on	

between	the	tag	of	the	
protein	and	binding	site	of	
the	detec?on	system		

Baell	and	Holloway,	J.	Med.	Chem.,	2010,	53:2719-40.	

~	500	filters		based	on	N	=	93212	compounds		



Structural & Toxic Alerts at http://ochem.eu 
•  Screening of compounds against published toxicity alerts, 

groups, frequent hitters 
•  Filter alerts by endpoints or publications 
•  Create or upload custom SMARTS rules 

Sushko	et	al,	J.	Chem.	Inf.	Model,	2012,	52(8):2310-6.	

>500	func?onal	groups	
>2.3k	alerts	in	total	



Identification of AlphaScreen-HIS Frequent Hitters
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TrueHitsTM	:		
Streptavidin	Donor		bead	
Bio?nylated	Acceptor	beads		
	

Schorpp	et	al	J.	Biomol.	Screen.	2014,	9,	715-726.	



Mode Of Action of AlphaScreen-HIS Frequent Hitters

Schorpp	et	al	J.	Biomol.	Screen.	2014,	9,	715-726.	



Bio Assays Ontology relationships

Abeyruwan,	U.	et	al	“Evolving	BioAssay	Ontology	(BAO):	Modulariza?on,	Integra?on	
and	Applica?ons,”	Journal	of	Biomedical	Seman?cs,	vol.	5,	no.	1:S5,	2014.	



Annotation of large chemical spaces

Big	Data,	which	have	been	always	in	chemistry.	



Virtual chemical spaces
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Virtual chemical spaces
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Virtual chemical spaces
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Virtual chemical spaces
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Annotation of compounds

•  ALOGPS	2.1*	(predic?on	of	logP	and	water	solubility	of	chemical	
compounds)	

•  ~	100,000	molecules	per	minute	

•  Annota?on	of	GDB-17	will	take	~3	years	of	calcula?ons	using	one	core	

•  ~10	minutes	on	Leibniz	Supercompu?ng	Centre	with	241,000	cores	

*Tetko,	I.V.		J.	Chem.	Inf.	Comput.	Sci.	2001,	41,	1407-1421.		



We can’t predict unpredictable!
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New machine learning approaches

Which	methods	can	help	us	with	Big	Data?	



	
Courtesy	of	Prof.	J.	Bajorath	

	



Multi-task learning
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Problem:	
	
• 	predic?on	of	?ssue-air	par??on	
coefficients		
• 	small	datasets	30-100	molecules	
(human	&	rat	data)	
	
Results:	
	
simultaneous	predic?on	of	several	
proper?es	increased	the	accuracy	
of	models	

Varnek,	A.	et	al	J.	Chem.	Inf.	Model.	2009,	49,	133-44.	

																													



Renaissance of neural networks

Deep	learning	
–  Massive	neural	networks	with	thousands	of	neurons	and	layers	
–  New	learning	methods	(dropout	technique)	

Examples	of	the	use	of	deep	learning	technology:	
–  Recogni?on	of	Chinese	characters	with	human	accuracy	
–  Victory	in	Go-tournament	
–  Diagnos?cs	of	breast	cancer	

Baskin,	I.I.;	Winkler,	D.;	Tetko,	I.V.	A	renaissance	of	neural	networks	in	drug	discovery.	
Expert	opinion	on	drug	discovery	2016,	11(8):785-95.	



h^p://adsabs.harvard.edu/abs/2015arXiv150202072R	

259	datasets		
•  128	PubChem	
•  17	MUV	
•  102	DUD-E	
•  12	Tox21	

Total	~	40M	datapoints	for	1.6M	compounds	

Descriptors:		
ECFP4	
RDKit	
	



Multitask Networks Learning Results

•  Massively	mul?task	networks	obtain	predic?ve	accuracies	significantly	
be^er	than	single-task	methods.		

•  The	predic?ve	power	of	mul?task	networks	improves	as	addi?onal	tasks	
and	data	are	added.	

•  The	total	amount	of	data	and	the	total	number	of	tasks	both	contribute	
significantly	to	mul?task	improvement.	

•  Mul?task	networks	afford	limited	transferability	to	tasks	not	in	the	
training	set.		

h^p://adsabs.harvard.edu/abs/2015arXiv150202072R	



Multitask benefit from increasing tasks and data 
independently.  

h^p://adsabs.harvard.edu/abs/2015arXiv150202072R	



Secure Information Sharing

How	can	we	share	informa?on	but	not	data?	
How	can	we	enable	coopera?on	between	industries?	



Secure Sharing of information

•  CINF/COMP	workshop	was	organized	during	ACS	in	2005	by	Prof.	Oprea	
•  Various	structure	representa?on	(descriptors)	were	proposed	
•  Several	methods	for	secure	sharing	were	introduced	

•  But	in	the	theore?cal	limit*	
–  SMILES	representa?on	of	molecules:	CCC,	CNCCC,	c1ccccc1	
–  Zipping	of	structures	requires	<	1	bit	per	atom	
–  Structure	with	32	atoms	requires	<	32	bits	
–  Any	descriptor	or	their	combina?on	with	>	32	bits	could	be	used	to	decode	a	

molecule	(in	theory)	

	
	

*Tetko,	I.V.;	Abagyan,	R.;	Oprea,	T.I.	J.	Comput.	Aided.	Mol.	Des.	2005,	19,	749-764.	



Currently used technologies

“Honest	broker”	
–  Receives	descriptors	(or	structures)	
–  Develop	models	and	do	not	reveal	the	underlying	data	

Sharing	rela?onships	between	structures	
–  Matched	Molecular	Pairs	(changes	in	property	due	to	change	of	groups)	

Sharing	developed	models	
–  Structural	alerts	
–  Computa?onal	predic?on	models	

Sharing	reliable	predic?ons	(surrogate	data)*	

*Tetko,	I.V.;	Abagyan,	R.;	Oprea,	T.I.	J.	Comput.	Aided.	Mol.	Des.	2005,	19,	749-764.	



Multi-party secure computation



Secure summation



Conclusions

ExpectaOons	
ü  Improved	predic?on	of	proper?es,	and	

ac?vi?es	
ü  Improved	poly-pharmacology	
ü  Search	of	new	chemistry	(top	down	

explora?on	and	de	novo	design)	
ü  Predic?on	of	in	vivo	enpoints	

Challenges	
ü  New	machine	learning	approaches	(deep	

learning)	
ü  Integra?on	of	diverse	data	and	a	priory	

knowledge	(ontology,	pathways,	in	vitro,	in	
vivo,	simula?on	results,	different	errors,		
etc.)	

ü  Applicability	domain	
ü  Secure	data	sharing	
ü  Data	visualiza?on	
ü  De	novo	design	



Further reading

•  Tetko,	I.	V.;	Engkvist,	O.;	Koch,	U.;	Reymond,	J.	L.;	Chen,	H.,	BIGCHEM:	
Challenges	and	Opportuni?es	for	Big	Data	Analysis	in	Chemistry.	Mol	
Inform	2016,		35(11-12):615-621	(Open	Access).	

•  Tetko,	I.V.;	Engkvist,	O.;	Chen,	H.	Does	'Big	Data'	exist	in	medicinal	
chemistry,	and	if	so,	how	can	it	be	harnessed?	Future	Med	Chem.	2016	
8(15):1801-1806	(Open	Access).	
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