

Cheminformatics in Drug Discovery, an Industrial Perspective

Hongming Chen, Thierry Kogej, Ola Engkvist

Hit Discovery, Discovery Sciences, Astrazeneca R&D Gothenburg

Source: PhRMA profile 2016

Cheminformatics @ AstraZeneca

- HTS work-up
- Library design
- Virtual screening
- Machine learning & AI

High Throughput Screening From Millions to just a few

Low cost/compound

High cost/compound

Slide modified from Mark Wigglesworth, AZ, with permission

HTS Analysis: Clustering analysis

Early days

- Heavily dependent on computational chemistry resources
- Linux, scripts, static workflows, data in flat files
- Cutting, pasting and reformatting between applications
- Difficult to revisit or take over an analysis from a colleague
- Time-consuming

iHAT: An Spotfire add-in for HTS Analysis

- Leverage the powerful visualization function of Spotfire
- Annotation of compounds with in-house
 experimental and predicted data
- Data integration from multiple sources
- Clustering of compounds
- Visualization and manipulation of cluster tree
- NN search

iHAT: Clustering and Reclustering

iHAT v1.9.39		
I Clustering Search Edit View	Retrieve Help	Idle
Clustering CLU2 Cluster 00001 (38) Cluster 000001 (24) Cluster 000005 (15) Cluster 000005 (15) Cluster 000008 (15) Cluster 000008 (15) Cluster 000008 (15) Cluster 000015 (12) Cluster 000019 (11) Cluster 000012 (11) Cluster 000021 (11) Cluster 000021 (11) Cluster 000021 (11) Cluster 000021 (11) Cluster 000022 (10) Cluster 000022 (10) Cluster 000025 (10) Cluster 000025 (10) Cluster 000025 (10) Cluster 000026 (8) Cluster 000026 (8) Cluster 000030 (8) Cluster 000038 (8) Cluster 000038 (8) Cluster 000038 (7) Cluster 000034 (7) Cluster 000028 (7) Cluster 000028 (7)	Current Cluster 000003 Nearest Cluster Molecule 001882 Nearest Molecules Cluster ID Similarity Count Image: Cluster 000129 0,695 2 Cluster 000012 0,472 11 Image: Cluster 000020 0,470 11 Cluster 000020 0,470 11 Image: Cluster 000026 0,453 8 Cluster 000026 0,453 8 Cluster 0000774 0,436 1 Cluster 0000774 0,436 1 Cluster 000040 0,429 6 Cluster 000044 0,425 6 Cluster 000044 0,424 6 Cluster 000051 0,413 12 Cluster 000051 0,413 12 Cluster 000015 0,413 12 Cluster 000016 0,405 2 Cluster 000018 0,400 11 Cluster 000018 0,400 2 Cluster 000018 0,400 12 Cluster 000018 0,400 2 Cluster 000018 0,400 12 Cluster 000016 140 2	$\begin{array}{c} & & & \\ & & \\ & & \\ & & \\ & & \\ \hline \\ & & \\ \hline \\ & \\ &$
Imm Cluster 000034 (7)		

Library design @ AstraZeneca

- Diversity library is generally out of fashion
- Focused library fit for specific project need
- DNA encoded libraries become popular, but analysis is challenging, >60M to 8B library sizes Currently, use classical library design method to reduce to 50M

preferred AZ library size

Definition of VS

- Virtual screening refers to any in-silico techniques used to search large compound databases (available chemicals or virtual libraries) to select a smaller number for biological testing
- Virtual screening can be used to
 - Select compounds for screening from in-house databases
 - Choose compounds to purchase from external suppliers
 - Select compounds from virtual libraries to be synthesized
- The technique applied depends on the amount of information available about the particular disease target and the desired outcome

VS methods

VS example

 Identification of sPLA2X inhibitors using ligand and structure based virtual screening

H. Chen et al./Bioorg. Med. Chem. Lett. 24 (2014) 5251-5255

Virtual screening platform @ AZ

Computational strategy

AI & Machine Learning Today Context, Definition & Advances

13 IMED Biotech Unit I Discovery Sciences

The rise of deep learning in drug discovery

(b)

- Deep learning technologies have been adopted in drug discovery
- Various forms of NN have been applied so far

De novo molecular generation with deep learning has developed very rapidly

molecular pharmaceutics

druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico

pubs.acs.org/molecularpharmaceutics

Artur Kadurin,^{*,†,§,∥} Sergey Nikolenko,^{‡,§,∥} Kuzma Khrabrov,[⊥] Alex Aliper,[†] and Alex Zhavoronkov^{*,†,#,¶}

Research Article

Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules

Rafael Gomez-Bombarellil'# [0], Jennifer N. Wei# [0], David Duvenaud*#, José Miguel Hernández-Lobato*#, Benjamin Sánchez-Lengelingt, Dennis Sheberlat [0], Jorge Aguilera-Iparraguirret, Timothy D. Hirzeli, Ryan P. Adams*", and Alan Aspuru-Guzik*# [6]

Scite This: ACS Cent. Sci. 2018, 4, 120-131

Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks

Marwin H. S. Segler,**[†][©] Thierry Kogej,[‡] Christian Tyrchan,[§] and Mark P. Waller*^{,||}[©]

RESEARCH

Molecular De-Novo Design through Deep Reinforcement Learning

Marcus Olivecrona^{*}, Thomas Blaschke[†], Ola Engkvist[†] and Hongming Chen[†]

The rise of deep learning in drug discovery

Hongming Chen¹, Ola Engkvist¹, Yinhai Wang², Marcus Olivecrona¹ and Thomas Blaschke¹

¹ Hit Discovery, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca R&D Gothenburg, Mölndal 43183, Sweden ² Quantitative Biology, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Unit 310, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK

Research Article

Deep learning @ AstraZeneca: Vision

Creating an integrate AI platform to impact drug discovery projects

Segler M.H.S. et al. Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction, Chemistry, 2017, 23(25), 5966-5971 Segler M.H.S. et al. Planning chemical syntheses with deep neural networks and symbolic AI, Nature, 2018, 555, 604-610

Deep learning @ AZ: De Novo Molecular Augmented Design Platform (REINVENT)

17

Iterations of design and compound synthesis

Deep learning at AstraZeneca: Reaction informatics

- First steps, building:
 - World-class Reaction Knowledge Base
 - On our work (past collaboration with M. Segler)

ARTICLE

Planning chemical syntheses with deep neural networks and symbolic AI

foi:10.1038/nature255

Marwin H. S. Segler^{1,2}, Mike Preuss³ & Mark P. Waller⁴

To plan the syntheses of small organic molecules, chemists use retrosynthesis, a problem–solving technique in which any tendencies are neurarisely transformed into increasingly simple precursors. Computer–sided terrosynthesis would be a valuable tool but at present it is slow and provides results of unsatification quality. Here we use Monte Carlo research and synthesis with the strength of the

Becoming FASTER with AI Through unsupervised learning for hit identification

Becoming CHEAPER with ML/AI

Becoming FASTER and CHEAPER with Al Al augmented *de novo* molecule design

AZ's first DMTA automation platform

- First protype built during 2017
- All DMTA steps fully integrated
- Suited for 100s of uninterrupted DMTA cycles.
 ML/AI module is integrated.
- Cycle times of ca. 2h
- Successfully applied in ongoing research project

Conclusions

- Cheminformatics is widely applied in Pharmaceutical industry
- Cheminformatics includes various aspects across different disciplines
- Adoption of machine learning and AI technologies will help Cheminformatics to better fit current and future research needs

Acknowledgement

- Marcus Olivercrona
- Thomas Blaschke
- Isabella Feierberg
- Christophe Grebner
- Erik Malmerberg
- Christian Tyrchan
- Garry Pairaudeau
- Clive Green
- Lars Carlsson
- Peter Varkonyi
- Michael Kossenjans

• EU Fundings

Confidentiality Notice

This file is private and may contain confidential and proprietary information. If you have received this file in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this file is not permitted and may be unlawful. AstraZeneca PLC, 1 Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0AA, UK, T: +44(0)203 749 5000, www.astrazeneca.com

