HelmholtzZentrum münchen

German Research Center for Environmental Health

Institute of Structural Biology Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Introduction to the Reference Interaction Site Model (RISM)

Ekaterina L. Ratkova

Chemoinformatics & Chemical Biology Group Helmholtz Center Munich, Germany

"BigChem" seminar / 22.03.2017

Outline

1. Integral Equations Theory (IET) of Molecular Liquids

- a. Ornstein-Zernike (OZ) equation
- b. Molecular OZ equation
- c. Reference Interaction Site Model (RISM)

2. Solvation thermodynamics from RISM approximations

a. Solvation Free Energyb. Partial Molar Volume

3. Systems structure predictions

a. Principal Hydration Sitesb. Fragments placement

a. Ornstein-Zernike (OZ) equation

b. Molecular OZ equationc. Reference Interaction Site Model (RISM)

2. Solvation thermodynamics from RISM approximations

a. Solvation Free Energyb. Partial Molar Volume

3. Systems structure predictions

a. Principal Hydration Sitesb. Fragments placement

Radial Distribution Function (RDF)

Direct correlation function

Ornstein, L. S. and Zernike, F. Proc. Acad. Sci. Amsterdam 1914, 17, 793-806

Indirect correlation function

$$h(r_{12}) = c(r_{12}) + \gamma(r_{12})$$

indirect correlation function

The indirect influence can be described with *direct* influence of particle **1** on **any** particle **3**, which, in turn, influences *indirectly* particle **2**

$$h(r_{12}) = c(r_{12}) + \rho \int c(r_{13})h(r_{32})dr_3$$

Ornstein-Zernike (OZ) equation

Ornstein-Zernike equation

for homogeneous fluid of spherical particles

$$h(r_{12}) = c(r_{12}) + \rho \int c(r_{13})h(r_{32})dr_3$$

 $h(r_{12}) = c(r_{12}) + \rho \int c(r_{13})c(r_{32})dr_3 + \rho^2 \int \int c(r_{13})c(r_{34})c(r_{42})dr_3dr_4 + \dots$

Ornstein, L. S. and Zernike, F. Proc. Acad. Sci. Amsterdam 1914, 17, 793-806

Closure relation

 $h(r_{12}) = c(r_{12}) + \rho \int c(r_{13})h(r_{32})dr_3$ two unknown functions

Closure relation

$$\begin{cases} h(r_{12}) = c(r_{12}) + \rho \int c(r_{13})h(r_{32})dr_3 \\ h(r_{12}) - 1 = e^{-\beta U(r_{12}) + h(r_{12}) - c(r_{12})} + B(r_{12}) & \text{bridge functional} \end{cases}$$

Hyper-Netted Chain Closure (HNC)

$$B(r) = 0$$

h(r)-1 = exp[$\Xi(r)$] Problem with convergence!

$$\Xi(r) = -\beta U(r) + h(r) - c(r)$$

Partial linearization of HNC closure:

$$h(r)-1 = \begin{cases} \exp[\Xi(r)] & \text{when } \Xi(r) \le 0 \\ \sum_{i=0}^{n} \Xi^{i}(r)/i! & \text{when } \Xi(r) \ge 0 \quad \text{(KH closure: i=1)} \end{cases}$$

J.P. Hansen, I.R. McDonald, *Theory of Simple Liquids* 4th ed., Elsevier Academic Press, Amsterdam, The Netherlands, **2000**

5

a. Ornstein-Zernike (OZ) equation

b. Molecular OZ equation

c. Reference Interaction Site Model (RISM)

2. Solvation thermodynamics from RISM approximations

a. Solvation Free Energyb. Partial Molar Volume

3. Systems structure predictions

a. Principal Hydration Sitesb. Fragments placement

MOZ equation

MOZ equations

homogeneous fluid:

$$h(\Gamma_{12}) = c(\Gamma_{12}) + \frac{\rho}{8\pi^2} \iint_{\mathbf{R}} \int_{\Omega} c(\Gamma_{13}) h(\Gamma_{32}) d\mathbf{r}_3 d\Theta_3$$

heterogeneous fluid:

$$h(\boldsymbol{\Gamma}_{ij}) = c(\boldsymbol{\Gamma}_{ij}) + \sum_{m=1}^{M} \frac{\rho_m}{8\pi^2} \int_{\mathbf{R}} \int_{\Omega} c(\boldsymbol{\Gamma}_{im}) h(\boldsymbol{\Gamma}_{mj}) d\boldsymbol{r}_m d\boldsymbol{\Theta}_m$$

6D integrals over positional and orientational coordinates

Necessary to introduce some *approximations* to make the MOZ equations solvable for systems of chemical interest

- a. Ornstein-Zernike (OZ) equation
- b. Molecular OZ equation
- c. Reference Interaction Site Model (RISM)

2. Solvation thermodynamics from RISM approximations

a. Solvation Free Energyb. Partial Molar Volume

3. Systems structure predictions

a. Principal Hydration Sitesb. Fragments placement

Site-site approximation

Molecules are modeled as *sets* of *sites* (atoms, groups).

Intramolecular correlation functions:

$$\omega_{ss'}(r) = \frac{\delta(r - r_{ss'})}{4\pi r_{ss'}^2}$$

Bulk solvent susceptibility:

$$\chi_{\alpha\beta} = \omega_{\beta\beta'}(r) + \rho h_{\alpha\beta}(r)$$

Assumption:

$$c(r_{ij}, \Theta_i, \Theta_j) = \sum_{s\alpha} c_{s\alpha}(r)$$

 $h_{s\alpha}(r) = \frac{1}{8\pi^2} \int_{\Omega} h(r_{ij}, \Theta_i, \Theta_j) d\Theta_i d\Theta_j$

D. Chandler, H.C. Andersen, J. Chem. Phys., 1972, 57, 1930-1937

D. Chandler, H.C. Andersen, J. Chem. Phys., 1972, 57, 1930;

D. Beglov, B. Roux, J. Phys. Chem., 1997, 101, 7821-7826

RISM calculations: *workflow*

AmberTools http://ambermd.org

http://ambermd.org/tutorials/ TUTORIAL A14: Using 3D-RISM to place waters (Dan Sindhikara)

https://www.chemcomp.com

ADF® molecular modeling suite

www.scm.com/adf-modeling-suite

- a. Ornstein-Zernike (OZ) equation
- b. Molecular OZ equation
- c. Reference Interaction Site Model (RISM)

2. Solvation thermodynamics from RISM approximations

a. Solvation Free Energyb. Partial Molar Volume

3. Systems structure predictions

a. Principal Hydration Sitesb. Fragments placement

Physico-chemical properties in Drug Design

Early stage Drug Design:

- Hit-to-lead
- Lead optimization

(filtering, ranking, and analysis of compounds)

Partitioning and hydration free energy

Models for hydration free energy calculation

Hydration free energy from RISM

D.S. Palmer, A.I. Frolov, E.L. Ratkova, M.V. Fedorov, J. Phys. Cond. Matt., 2010, 22, 492101

Prediction of HFE for drugs

 ΔG_{hyd}^{exp} [kcal/mol]

logP predictions

$$\log P_{oct/wat} = \frac{1}{-RT(\ln 10)} \left(\Delta G_{solv(oct)}^{UC} - \Delta G_{solv(wat)}^{UC} \right)$$
$$\Delta G_{solv}^{UC} = \Delta G_{solv}^{RISM} + a_1 \rho \overline{V} + a_0$$

- alkanes
- alkylbenzenes
- alcohols
- phenols
- chloroalkanes
- aldehydes
- * ketones
- polychlorinated alkanes
- polychlorinated benzenes
- polychlorinated alkenes
- acids and amines

Small molecules:

• there are as efficient predictive models

Larger molecules:

- problem with site-site representation of solvent
- problems with convergence •

- a. Ornstein-Zernike (OZ) equation
- b. Molecular OZ equation
- c. Reference Interaction Site Model (RISM)

2. Solvation thermodynamics from RISM approximations

a. Solvation Free Energyb. Partial Molar Volume

3. Systems structure predictions

a. Principal Hydration Sitesb. Fragments placement

Partial Molar Volume (PMV)

Partial Molar Volume characterizes the change in the volume when an infinitesimal amount of substance is added to water at constant T, P, and amount of solvent.

$$\overline{\mathbf{V}}_{A} = \left(\frac{\partial \mathbf{V}}{\partial n_{A}}\right)_{T,P,n_{B\neq A}}$$

T. Imai; *et al. Protein Sci.* **2007**, *16*, 1927. T.V. Chalikian; K.J. Breslauer. *Biopolymers* **1996**, *39*, 619.

PMV predictions with RISM

Ratkova E.L. (2011). *PhD Thesis*. University of Duisburg-Essen, Germany T. Imai; *et al. Chem, Phys. Lett.* 2004, 395, 1.

- a. Ornstein-Zernike (OZ) equation
- b. Molecular OZ equation
- c. Reference Interaction Site Model (RISM)

2. Solvation thermodynamics from RISM approximations

a. Solvation Free Energyb. Partial Molar Volume

3. Systems structure predictions a. Principal Hydration Sites b. Fragments placement

Water analysis: workflow

Water analysis: *software*

1) Explicit positions of water molecules

Software "Placevent" (free)

http://ambermd.org/tutorials/ TUTORIAL A14

2) Thermodynamic parameters of water molecules

Software "SolutionMap" (Molecular Design Frontier Co. Ltd.)

(a-la "WaterMap")

Principle hydration sites

HIV-1 protease has 1 conserved H_2O in binding pocket ^[1]

Bovine chymosin has 7 conserved H_2O in binding pocket ^[2]

[1] D.J. Sindhikara, N. Yoshida, F. Hirata, *J. Comp. Chem.* **2012**, 133, 1536

[2] Palmer et al., J. Comp. Theor. Chem. 2013, 9, 5706

- a. Ornstein-Zernike (OZ) equation
- b. Molecular OZ equation
- c. Reference Interaction Site Model (RISM)

2. Solvation thermodynamics from RISM approximations

a. Solvation Free Energyb. Partial Molar Volume

3. Systems structure predictions a. Principal Hydration Sites b. Fragments placement

Mixed solvent for fragment placement in *de-novo* design

X-ray data **3D RISM results**

X-ray structure of ZF^PLA

complex with thermolysin

25

Take-home messages

RISM is <u>a theory</u>, not a computer experiment

- Significantly less computationally expensive than molecular simulation
- ✓ Allows specific solute-solvent effects to be studied (unlike continuum solvent models)
- 1D and 3D versions allow choose between speed and accuracy
- Allows calculations at different parameters (T, concentration, etc.)

Phys/chem properties predictions

Solvent = water (ΔG_{hydr} , PMV)

- ✓ high accuracy for small compounds
- ✓ applicable for larger molecules

Solvent = octanol (logP_{o/w})

- ✓ high accuracy for small compounds
- problems for larger molecules

Structure predictions

Solvent = water

- ✓ Correct principal hydration sites
- ✓ Analysis of thermodynamics
- ✓ Developed software

Solvent = water + fragments

- there is a proof-of-concept
- non-trivial replacement
- under development

Acknowledgements

University of Strathclyde Glasgow, UK Prof. Maxim Fedorov Prof. David Palmer

AstraZeneca R&D Mölndal, Sweden Dr. Andrey Frolov

Financial support: Alexander von Humboldt Foundation

University of Duisburg-Essen Essen, Germany Dr. Volodymyr Sergiievskyi

Helmholtz Center Munich, Germany Dr. Igor Tetko Prof. Michael Sattler Dr. Grzegorz Popowicz Dr. Maciej Dawidowski

