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Virtual Screening 

•  Rapid	and	inexpensive	iden,fica,on	of	poten(al	bioac(ve	
compounds	from	large	collec(ons	of	chemicals	

•  Priori,ze	compounds	to	be	tested	in-vitro	

•  Molecular	docking	is	one	of	the	most	applied	methods	for	
virtual	screening	

•  Docking	is	based	on	the	analysis	of	ligand	complementarity	for	
the	target	ac(ve	site	in	geometric	and	energe,c	terms	

•  By	ranking	compounds	according	to	their	predicted	affinity	
score,	the	priori,zed	list	of	compounds	can	be	used	to	ra(onally	
select	a	small	subset	of	candidates	for	biological	assays	

Virtual
screening



•  Fast	and	high-throughput	method	

•  Less	expensive	compared	to	in-vitro	screening	

•  Difficul(es	to	simulate	ligand	and	receptor	flexibility	

•  Approximated	scoring	func(ons	

•  Poor	agreement	between	es(mated	and	experimental	
binding	affini(es	

•  False	posi(ves	and	nega(ves	in	the	ranked	lists	

	 		

Molecular Docking: Pros and Cons 



www.rcsb.org 

You need a crystal structure of the target  

131k	structures	(June	2017)	





Then look for a (druggable) binding site 
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Ligand-protein	interac,ons 	 		Prediction of a ligand (L) – protein (P) complex 



Covalent bonds 

Electrostatic interactions 

Hydrogen bonds 

Hydrophobic interactions 













The importance of hydrogen bonds 
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Testing the reliability of cristallographic structures 

Overlapping of Methotrexate (MTX, yellow) in complex with DHFR and one substrate analog 
(DHF, cyan) 
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Database of molecules 

DOCKING: 
Ligands with best 
energetic score 

CANDIDATES 
For biological assay 

Visual  
check 

Molecular 
properties 

Structure-based virtual screening 
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What is molecular docking? 

The aim of different docking methods is to predict the 
interactions of potential ligands in the binding site of a biological 
target.  

Once the affinity (ΔG) of potential ligand-target binding is 
estimated, it is possible to rank the compounds, meaning that 
compounds are sorted with respect to the score (from more 
negative and favorable ΔG  to less negative scores) 



THE «DOCK» METHOD 

1) Generation of spheres describing the surface of the active site 
Spheres have variable dimensions, in order to perfectly describe the concave and convex 
parts of the molecular surface of the active site of the macromolecules. Spheres can 
overlap. 

2) Matching 
To steer the ligand inside the active site part of the spheres’ centers describing the active 
site will be overlapped with atoms of the ligands. The center of the spheres will be paired 
with the atoms of the ligand. 
This matching step generates as many orientations of the ligand inside the site as the 
possible spheres/atoms overlapping.  



3) Scoring 

Any orientation is scored (positively or negatively) through two criteria: : 

a) Steric conflict with the macromolecule: if the orientation generates steric conflict 
between the ligand and the macromolecule, the orientation will be discarded 

b) Highest ligand-macromolecule interaction energy : a score is assigned to each 
orientation that satisfies the steric criteria (point a) )  through calculations of the ligand-
macromolecule interaction energy. This is calculated adding the Van der Waals interactions 
(hydrophobic) and electrostatic energies. 

Σ E int  = EvdW + Eelect 



Methodological aspects involved in molecular docking 

What can we expect from docking? 

Given the tridimensional structure of the target and one database of possible 
ligands we can expect to find molecules, different from known ones, able to bind 
the target. We can also expect to be able to predict their affinity. 

Which factors are mostly affecting the quality of docking results? 

1.  Ligand conformational freedom 
2.  Target conformational freedom 
3.   Solvent contribution 
4.   Effect of partial atomic charges 
6.   Calculation speed 
7.   Calculation of binding ΔG: scoring functions 





Before	induced	fit	

AOer	induced	fit	



3. Solvation: The effect of the solvent in assembling the ligand-target complex is pivotal. 
The contribution of solvation may be calculated with different methods and is added to the 
other components of the function: 

ΔGbind  = ΔGinteraction – ΔGsolv (L) – ΔGsolv (R) 

4. Effect of partial atomic charges: partial atomic charges of the ligand and receptor’s 
atoms can be assigned with different methods.  
A.e. Gasteiger-Marsili,  semi-empirical methods  The «quality» of the used charges plays a 
big role on the accuracy of docking results.  

6. Calculation speed:  A compromise has to be made between protocol accuracy and 
required time for each molecule, especially in virtual screening procedures with many 
molecules.  

7. Scoring function: 



SCORING FUNCTIONS 

Scoring methods must predict the orientation (or pose) of the potential ligand and predict its 
affinity for the target. An overall score is thus assigned to the ligand-target complex. This score 
has to be representative of the interaction energy (ΔG) between ligand and target. 

   score   α    ΔG 

Energy interactions are correlated to the affinity of a given ligand for that target by this formula: 

ΔG binding = - RT ln Kaffinity 

This means that by computing the binding ΔG it is possible to adequately estimate the activity 
of a ligand toward a target. Therefore this value makes it possible to screen big databases and 
select the best ligands 



In order to have an efficient scoring function, some requirements should be 
met: 

a.  The generated ligand orientations have to be correctly ordered, meaning that the 
pose with a higher similarity to the experimental one should have a better score. 

   “REDOCKING” 

b.  If more than one ligands are docked in the same active site, the relative binding 
energy has to be correctly sorted. This means that ligands with higher affinity 
should have better score with regards to ligands with lower affinity, and clearly 
distinct from inactive molecules.  

c.  The scoring function has to be fast enough to be included in a scoring program. 
This is particularly true when these methods must be applied to screen a high 
number of chemical compounds.  





  SCORING FUNCTIONS 

●  FORCE FIELD based 
●  KNOWLEDGE-BASED 
●  EMPIRICAL 
●  CONSENSUS 

FORCE FIELDS based SCORING FUNCTIONS 
These methods use a classic energetic function from molecular mechanics 
(Amber, Charmm,… force fields) to compute the score. Binding energies of the 
ligand-target complex are approximated as a sum of the Van der Waals and 
electrostatic interactions between pairs of atoms of the ligand-target complex. A 
correction is applied to account for solvation effects.  

The free energy ΔGbinding  is: 

ΔGbinding     =    ΔHbinding -TΔSbinding   =   ΔGinteraction + ΔGsolvation - TΔSbinding 



The contribute of the solvation energy ( ΔGsolvatation)  is actually decomposed in two 
components: 

ΔGsolv= ΔGelettrostatic solv +ΔGnon polar solv 

where: 

ΔGelettrostatic solv electrostatic component usually computed with the Poisson-
Boltzmann equation or with the Generalized Born 
ΔGnon polar  non polar component generally proportional to the area of the surface 
accessible to the solvent 

The entropic contribution (ΔS) is difficult to predict and very often is overlooked. 

Advantages: Accuracy 

Disadvantages: methods based on these scoring function tend to require longer 
computational times, due to the number and the complexity of the energetic terms. 



KNOWLEDGE-BASED SCORING FUNCTIONS 

1.  More frequent ligand-target interactions are favored from an energetic point of 
view and thus they have a positive contribution on the binding affinity. 

2.  Using Boltzmann distribution equation it is possible to convert the probability of 
finding an atom A of the ligand at a distance r from atom B  of the protein in 
terms of energy interaction between A and B as functions of r.  

Knowledge-based functions derive from the observation of statistical analysis on 
interatomic contacts between ligands and proteins of a wide sample of 
crystallographic structures of complexes in the PDB. 

They are based on the probability that a given interaction might happen between a 
determined pair of atoms (or better said, “atom types”) 

The score is proportional to the sum of the interactions between all atom pairs and it 
is «weighted» on  the probability that a given interaction might actually happen. 



EMPIRICAL SCORING FUNCTIONS 

The energetic score is represented as a binding ΔG. 

The scoring function is calibrated on a set of protein-ligand complexes with known affinity 
binding data.  

These functions are based on a series of empirical rules that take into account all atom 
types and their geometries for the different kinds of interaction. 

The binding free energy is estimated as the sum of terms that resemble force field based 
scoring functions. However, in this case, contributions are empirically calculated. 

In the sum, the «weight» of every term in empirically parametrized, so that the total scores 
(ΔGbinding) for known ligand are the closest possible to the ΔGbinding values related to 
experimental binding constants of a given series of target-ligand complexes.  

The first function of this kind is Bohm’s function. It has five terms representing hydrogen 
bonds, ionic interactions, lipophilic interactions, number of rotable bonds.  

ΔGbinding	=	ΔG0			+	ΔGhb	∑hbondsf(ΔR,Δα)	
																									+ΔGionic	∑ionic	int	f(ΔR,Δα)		
																									+	ΔGlipo	│Alipo│	
																									+	ΔGrotNrot		



CONSENSUS SCORING FUNCTIONS 

In this approach several scoring function are used and then combined.  

Highly scored ligand-target complexes in two or more scoring function are 
considered strong indication for binding.  

This method drastically reduces the presence of false positives, either in 
choosing the most promising molecules for biological tests, but also in choosing 
the most “correct” orientation for the selected compounds. 



Enrichment factor 
•  How to evaluate the «performance» of a scoring method?  

•  The performance of a docking method can be evaluated taking into 
consideration: 

1) The ability to reproduce the correct orientation of ligands for which there 
are crystallographic complexes.  (redocking) 

2) The ability to higly score known active ligands with respect to known 
inactive or untested molecules for a given target. (enrichment factor). 

3) The ability to identify new biologically active molecules inside database. 
These molecules will be selected and biologically tested (hit rate). 



To determinate enrichment factors, a mixed database composed of known 
ligands and “decoys” is built.  

Decoys are molecules with different chemical structure from the ligands (so 
that they can not, theoretically, be considered as proper «ligands» for the target), 
but with similar pysico-chemical properties such as Molecular Weight, LogP, 
number of groups able to make H bonds, … 
For each known ligand a fixed number of decoys is included (to keep, for 
example, a 1:50 ratio) 

A docking-based virtual screening is performed, and compounds are then sorted 
based on their ΔGbinding 
The enrichment factor is calculated evaluating how many known ligands are 
ranked with a high score, compared to the rest of the database.  

  EF = 
n° known ligands/percentage of database 

n° total ligands/entire database 
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 MOLECULAR DOCKING METHODS 

There are several docking algorithms, whose differences are both in the method used to 
look for the orientation of the potential ligand, but also on the scoring method.  



• Develop	an	automated	post-docking	method	
specifically	designed	to	improve	docking	results	

•  Improved	simula(on	of	flexibility	
•  MD	subtask	specifically	devised	to	help	overcome	poten(ally	high	
energy	barriers	between	different	conforma(ons	of	the	ligand	in	
the	target-binding	site	

•  Improved	evalua(on	of	binding	affinity	
•  MM-PBSA	and	MM-GBSA	scoring	func(ons	taking	into	account	the	
solva(on	contribu(on	to	the	binding	energy	

Post-docking approaches 



BEAR	(Binding	Es(ma(on	AOer	Refinement)	

Simulation of flexibility using MD 

Prediction of binding affinity using free energy-based scoring 
functions (MM-PBSA and MM-GBSA) 



Force-field based scoring functions 

More accurate but generally computationally intensive methods are applicable to a 
small number of compounds, while more approximate methods are usually faster 
but less accurate in predicting binding affinities 

Biotechnology Advances 2012, 30, 244-250 



Scoring function reliability 

ALR2 

DHFR 

R2=0.80 R2=0.73

R2=0.87 R2=0.91

MM-PBSA Binding Free Energy MM-GBSA Binding Free Energy 
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Enrichment Factors: DHFR / NCI-div 

AD4 

PB GB 

•  Target: DHFR (PDB code 1J3I)     Docking with Autodock 4 
•  Compounds:       BEAR refinement and rescoring 

•  NCI diversity set (1720 compounds)  
•  14 known inhibitors (1 known inhibitor/~120 cpds) 



Enrichment Factors: DHFR / ZINC 

•  Target: DHFR  
•  Compounds: 

•  ZINC Database Lead-Like subset (~1,5 million  compounds)  
•  ~170 known inhibitors (1 known inhibitor/~9000 cpds) 

Random 

AutoDock 

BEAR 

Perfect 



Applications in drug discovery 

Docking of  
~4 million 

compounds on 
several targets•  Initiative for drug discovery against 

neglected and emergent diseases 

•  International collaboration with 
partners from Europe, Asia and Africa 

•  Based on virtual screening on 
computing GRID 



EGEE computing grid  



•  Plasmodium falciparum aspartic protease

•  Key enzyme for the parasite metabolism, 
responsible for the initial cleavage of 
haemoglobin during the intra-erythrocyte 
stage of the parasite infection

•  WISDOM (Wide in Silico Docking on 
Malaria) targets

Data challenge on P. falc Plasmepsin II 



•  Protein	structure:	Plasmepsin	II	from	PDB	
•  Ligands:	~1	million	cpds	from	ZINC	database	
•  Docking	soOware:	FlexX	
•  Docking	results	analysis	
•  BEAR	post-processing	and	results	analysis	
•  Visual	inspec(on	of	the	complexes	
•  Compound	selec(on	for	in-vitro	assays	

ZINC database
(~1 mlns compounds)

Docking Complexes
(FlexX)

BEAR
analysis and selection 
of candidates for in-

vitro assays

Virtual screening protocol 



BEAR rankings 

Results	from	BEAR	analysis	were	ranked	according	to	the	two	scoring	func(ons	used	by	
BEAR	(MM-PBSA/MM-GBSA)	

MM-PBSA 

MM-GBSA 

Potent	(nM)	Plasmepsin	inhibitors	Pepsta,n	A,	RS367,	RS370	were	
retrieved	at	the	first	posi(ons	of	the	ranked	lists,	whereas	these	
compounds	ranked	several	thousand	posi(ons	downstream	in	the	
original	docking	list	



Analysis	of	the	interac(ons	with	the	
PLM	ac(ve	site	residues	involved	in	
binding	of	known	inhibitors	such	as	
Pepsta(n	A	

Best	scoring	compounds	establish	key	
interac,ons	with	the	protein	

Analysis of ligand-plasmepsin interactions 

Asp34 Ala38 

Val78 Asp214 
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Analysis of ligand-target interactions 

•  Pf	DHFR	crystal	structure	

•  4.3	million	cpds	(ZINC	database)	

•  Docking	with	FlexX	

•  Post-docking	with	BEAR	of	15.000	best	
compounds.		

Asp54	Ile14	

Ile164	 Asp54	+	Ile14	

Asp54	+	Ile164	 Asp54	+	Ile164	+	Ile14	



•  Selec(on	was	made	from	the	200	best	ranking	compounds	in	both	MM-PBSA	and	
MM-GBSA	ranked	lists	

•  Interac,ons	with	ac(ve	site	residues	(visualiza(on)	

•  Chemical	diversity:	selec(on	of	compounds	that	interact	with	Asp214	and	Asp34	
with	different	scaffolds:	

Selection of compounds for testing 

Guanidine N-alkoxyamidine Amide Urea/Thiourea 

30	compounds	selected	for	biological	assays	



Biological assays 

•  Assay	method:	FRET	analysis	

•  Compounds	tested:	30		

•  Ac,ve	compounds	iden,fied:	26	

•  Inac(ve	compounds:	4	
•  Range	of	ac(vity:		

4.3	nM	-	1.8	µM		

•  HIT	RATE	~85%	

•  Two entirely new classes of 
inhibitors	


