TOWARDS A UNIVERSAL MAP OF DRUG-LIKE SPACE

SIDOROV Pavel, GASPAR Helena, MARCOU Gilles, VARNEK Alexandre & HORVATH Dragos

> Laboratory of Chemoinformatics, University of Strasbourg

Chém Jinformatique

Geographic vs. Chemical Space (CS) Maps – the subtle difference...

© Geospatial Information Authority of Japan, Chiba University and Collaborating Organizations

 CS maps are not 'universal' (pluricompetent with respect to arbitrary properties) - but some are closer to this ideal...

3 **Generative Topographic Mapping: a brief** review

H. Gaspar et al. JCIM, 53, 12, 2013

- Molecules are represented in *n*-dimensional descriptor space
- A flexible 2D manifold is injected, molecules are projected on it
- Manifold is unbent into KxK square grid of nodes 2D map
- Molecules are fuzzily associated to each node: association probabilities are called *responsibilities*.
- Similar responsibilities imply similar properties: regression & classification models

Searching for the Universal CS Map...

'Training' Data Sets...

- Selection set, for Universality criterion estimation:
 - 144 ChEMBL target-specific compound series, all larger than 50 compounds, curated and provided by Prof. J. Bajorath. Set members are all the compounds with reported *pK_i* values with respect to the associated targets (receptors, enzymes, *etc*).
 - These sets are *modelable* (robust SVM models could be obtained for each).
- Frame sets:
 - Set 1: a diverse set of 11K marketed drugs, biological reference compounds, ligands from PubChem database, as well as randomly picked ZINC compounds;
 - Set 2: a subset of the selection ChEMBL dataset where only one-third (but at least 50) of ligands of each target are included (9877 molecules);
 - Set 3: a subset of the selection ChEMBL dataset, where *half* of ligands for *half* of targets are taken (7214 molecules);
 - Sets 4 and 5: combinations of Set 2 and Set 3 with Set 1, e.g. fused sets labeled Set1+2 and Set1+3, respectively.

Darwinian Evolution towards Universality...

Selection of five maps with best Neighborhood Behavior (NB)

 Since selection sets feature quantitative affinity data (pK_i values), NB of maps can be expressed both in terms of regression and classification model proficiency...

Мар	Descriptors & <u>Frame Set</u>
1	IIRAB-PH-1-2 : Pharmacophore-colored atom-centered fragments, covering first and second coordination sphere; <u>Set 3</u>
2	IAB-FF-P-2-6: CVFF Force-field-type-colored atom pairs at 1 to 5 bonds apart, including interposed bond information; <u>Set 2</u>
3	IA-FF-P-2-6: as above, but without bond information; Set 3
4	IAB-PH-P-2-14: Pharmacophore-colored atom pairs, at 1 to 5 bonds apart, including information on bonds nearest to terminal atoms; <u>Set 2</u>
5	III-PH-3-4: Pharmacophore triplets, with edges of topological distances 3 and 4; Set 3

External challenges for the five best maps...

Target Binding

Discriminate Actives from (tested) Inactives, for 410 targets unrelated to

Selection targets), selection targets selection t

Antimala

Discriminate (tested) Inactiv antimalarial bioassays

External challenge – Target binding..

External challenge – Cox-2 ligands

Map of **Cox-2** (CHEMBL230) ligands, cross-validated balanced accuracy = 0.7. In the zoomed-in portions – common substructures for coxib-like ligands only

External challenge – Antiviral and Antimalarial compound recognition..

Chemogenomics Challenge: describe targets by their Cumulated Ligand Responsibilities

Ligands associated to a target T...

13

IF

Cumulated Ligand Responsibility Vectors (CLRV) are valid target descriptors

THEN

Targets within a family have, on the average, more similar CLRV than extrafamily targets.

WHERE

Inter-target distance is the complement of CLRV Tanimoto scores.

Cohesion/Separation = mean intra/inter-family distances.

Super- family	Family	Family size	Shortest inter- target distance	Cohesion & StdDev	Shortest inter- target distance	Separation & StdDev	p value
5			in family	in family	to others	to others	
gpcr	Adenosine	4	0.182	0.442 ± 0.165	0.936	0.993 ± 0.011	1.00E-09 💙
kin	ТК	35	0.035	0.408 ± 0.148	0.043	0.490 ± 0.237	1.00E-09!?
gpcr	Serotonin	8	0.38	0.816 ± 0.164	0.54	0.977 ± 0.050	6.00E-07 ¥
gpcr	Opioid	4	0.202	0.481 ± 0.263	0.917	0.991 ± 0.013	2.40E-05 ✔
gpcr	Melano- cortin	4	0.322	0.644 ± 0.186	0.813	0.989 ± 0.022	5.60E-05 ¥
gpcr	Prostanoid	8	0.099	0.823 ± 0.203	0.472	0.981 ± 0.046	7.40E-05 🗸
gpcr	Dopamine	5	0.253	0.688 ± 0.266	0.54	0.972 ± 0.056	0.0021 🗸
gpcr	EDG	4	0.378	0.713 ± 0.195	0.719	0.964 ± 0.053	0.0062 🗸
gpcr	Nucleotide- like	6	0.182	0.774 ± 0.290	0.472	0.990 ±0.033	0.0074 🗸
gpcr	Somato- statin	4	0.115	0.606 ± 0.308	0.502	0.977 ± 0.045	0.0086 🗸
gpcr	Adrenergic	7	0.035	0.798 ± 0.314	0.804	0.984 ± 0.023	0.0091 🗸
gpcr	Histamine	4	0.644	0.863 ± 0.112	0.756	0.965 ± 0.046	0.042
kin	CMGC	8	0.171	0.401 ± 0.138	0.067	0.448 ± 0.216	0.094 ?
kin	AGC	12	0.102	0.570 ± 0.295	0.036	0.525 ± 0.272	0.23 ?
kin	Src	6	0.17	0.412 ± 0.156	0.035	0.454 ± 0.217	0.33 ?
kin	САМК	9	0.053	0.438 ± 0.345	0.034	0.469 ± 0.286	0.6 ?

Conclusions

- A strategy to choose parameters (both internal parameters of the method and meta-parameters like descriptor type and frame sets) has been applied to the GTM algorithm, in order to build generally applicable, universal – that is, polypharmacologically competent – maps.
- Selected maps were challenged to coherently separate actives from inactives, in projections of novel target-specific ligands, or *in vivo* tested compounds. Albeit nor the ligands, neither the targets were represented at map selection stage, the challenges were largely successful.
- Furthermore, Cumulated Ligand Responsibility Vectors produced when projecting target-specific ligand collections on these maps are coherent target descriptors, as they were seen to agree with accepted target classification schemes.
- Thus, the maps are surely perfectible, but general and robust 'Universal' representations of CS... as reflected in today's ChEMBL database.

Datasets:

Prof. J. Bajorath, University of Bonn
B. Viira, University of Tartu
K. Klimenko, University of Strasbourg
& A.V. Bogatsky Physico-chemical Institute
T. Gimadiev, Kazan Federal University
& University of Strasbourg

Number Crunching: High Perfomance Computing Centers at the Universities of Strasbourg (EL) and Cluj (RO)

Thank you for your attention