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Chemoinformatics as a theoretical

chemistry discipline

Alexandre Varnek
University of Strasbourg

BigChem lecture, 26 October 2016

Chemoinformatics:

a new discipline ...

Chemoinformatics is the mixing of those information resources to
transform data into information and information into knowledge
for the intended purpose of making better decisions faster in the area

of drug lead identification and optimization”

Frank Brown, 1998

10/26/2016



Chemoinformatics: definition

Chemoinformatics is a generic term that encompasses the design, creation, organization,

management, retrieval, analysis, dissemination, visualization, and use of chemical
information

G. Paris, 1998

Chemoinformatics is the mixing of those information resources to transform data into
information and information into knowledge for the intended purpose of making better
decisions faster in the area of drug lead identification and optimization”

F.K. Brown, 1998

Chemoinformatics is the application of informatics methods to solve chemical problems
J. Gasteiger, 2004

Chemoinformatics is a field based on the representation of molecules as objects (graphs
or vectors) in a chemical space

A. Varnek & |I. Baskin, 2011

Chemoinformatics:

new disciline combining several ,,old“ fields

Chemical databases E I

Michael Lynch Peter Willett

y

Johann Gasteiger

Structure-Activity modeling (QSAR)

Structure-based drug design

Irwin D. Kuntz Hans-Joachim Bhm
s |
Computer-aided synthesis design \@
Elias Corey Ivar Ugi
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Selected books in chemoinformatics

Cheminlomatic
By Factue it b

Chemoinformatics:

intersection of chemistry, computer science, mathematics,
biology, material science, ...

Is Chemoinformatics an individual scientific
discipline or just a mixture of methods and

concepts imported from different fields ?
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Review

DOI: 10.1002/minf. 201000100

Chemoinformatics as a Theoretical Chemistry Discipline

Alexandre Varnek*™ and Igor L Baskin™

Mol. Inf. 2011, 30, 20- 32

Chemoinformatics is defined as individual discipline
characterized by its own molecular model, basic concepts,
major applications and learning approach

OUTLOOK

Needs in chemoinformatics

3 complementary modeling disciplines
o Quantum Chemistry, FF modeling and Chemoinformatics —

Fundamentals of Chemoinformatics

o Chemical Space paradigm: graphs-based and descriptors based CS

o Modeling background: Machine learning methods.

Chemoinformatics and "Sister" Disciplines

0 Machine Learning, Chemometrics and Bioinformatics
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Needs in Chemoinformatics

Big Data Challenge

> 108 compounds are
currently available

102 drug-like molecules
could be synthesized

(see P. Polischuk, T. Madzidov, A. Varnek., JCAMD, 2013)

L

Goal: to select few useful compounds from huge chemical database




Screening: finding the needle in the haystack

~" molecules

Chemoinformatics:
pattern recognition in chemistry

- Specific structural motifs,

- Selected molecular properties (shape, fields, ...),

- Interaction patterns,

- Mathematical equations

Property= F (structure)
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Virtual screening “funnel”

Filters

imilarity search
(Q)SAR
Pharmacophore

CHEMICAL DATABASE

Docking

P

; HITS
o >10° - 10°

" molecules ~10! - 10°
- molecules

Theoretical chemistry

Quantum Chemistry

Force Field
Molecular Modelling
Chemoinformatics
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Theoretical chemistry

- Molecular model
- Basic concepts
Force Field - Major applications
Molecular Modelling - Learning approaches

Chemoinformatics

Molecular Model

Quantum Chemistry BN celectrons and nuclei
Molecular Modelling

* molecular graphs

Chemoinformatics . . /cscriptor vectors ‘




Basic concepts

Quantum Chemistry M |\ c/particle dualism

Force Field . _
classical mechanics

Molecular Modelling

chemical space

Chemoinformatics .

Basic approaches

Quantum Chemistry Schrédinger equation,

HF, DFT, ...

. Force Field implementation
Force Field in molecular mechanics,

Molecular Modelling and molecular dynamics

- graphs theory,
Chemoinformatics —_— - statistical learning
- similarity/diversity
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Force Field

Quantum Chemistry

Molecular Modelling

Chemoinformatics _

Major applications

-interpretation of known

phenomena

-property assessment in a

very limited scale

-property assessment
in a limited scale

-interpretation of
known phenomena

-storage, organisation

and search of structures
(chemical databases)

- property / activity assessment

Direct link with a given property

Quantum Chemistry

Force Field

Molecular Modelling

Chemoinformatics

very limited number
of properties

limited number ‘
of properties

any property I

10/26/2016
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Learning approach

* In chemoinformatics the logic of learning is not
based on existing physical theories.
Chemoinformatics considers the world too complex
to be a priori described by any set of rules. Thus,
the rules (models) in chemoinformatics are not
explicitly taken from rigorous physical models, but
learned inductively from the data.

Chemoinformatics: From Data to Knowledge

Inductive
learning

Deductive
learning

Quantum
Mecahnics

Chemoinformatics

10/26/2016
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Organic chemistry:
exercise of « intuitive » chemoinformatics

A TEXTBOOK OF

 CHEMISTRY|

Chemical Space paradigm

Chemoinformatics is a field dealing with
molecular objects (graphs, vectors) in
chemical space

10/26/2016
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Chemical Space paradigm

il C:I
L@) ~L' HYDROFHOBIC
_w _IEQ;%@
>
graphs-based descriptors -based

SPACE = objects + relations between them

Scaffolds and Frameworks

R-groups
_ S
=
|
N N

Scaffold Framework

Bemis, G.W.; Murcko, M.A. J.Med.Chem 1996, 39, 2887-2893

10/26/2016
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The Scaffold Tree - Visualization of the Scaffold Universe by Hierarchical

Scaffold Classification
A. Schuffenhauer, P. Ertl, et al. J. Chem. Inf. Model., 2007, 47 (1), 47-58
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Scaffold tree for the results of pyruvate kinase assay. Color intensity represents
the ratio of active and inactive molecules with these scaffolds.

A. Schuffenhauer, P. Ertl, S. Roggo, S. Wetzel, M. A. Koch, and H.Waldmann J. Chem. Inf. Model., 2007, 47 (1), 47—%@
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Maximal Common Substructure (MCS) similarity index

L Nucs
Graph Similarity = m
1,42

saolones

Mol 1 Mol 2
N, =16 N, = 18
s
MCS ;
Nmes =7 Graph Similarity = e

T. R. Hagadone J. Chem. Inf. Comput. Sci. 1992,32, 515-521

Chemical Space Travel

Ruud van Deursen and Jean-Louis Reymond"
ChemMedChem 2007, 2, 636 - 640

Figure 1. Travelling between A and B for targeted exploration of unknown
chemical space (shaded area). The shaded area under n <11 has been ex-
plored by extensive enumeration.™ n is the number of non-hydrogen
atoms in a molecule. The area is proportional to log N for N=the total
number of molecules in chemical space up to n atoms per molecule "

10/26/2016
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Chemical Space Travel

Ruud van Deursen and Jean-Louis Reymond!

ChemMedChem 2007, 2, 636640

Nearest neighbour mutations'™

Atom type exchange'®
Atom inversion®!
Atom removal®!

Atom addition™!

Bond saturation'?

Bond unsaturation

Bond rearrangement™’
Non-nearest neighbour mutations

Aromatic ring addition“

Replaces any atom by another atom type
Inverts two neighbouring atoms

Primary: A—X—A

Secondary: A—X-A—A-A

Tertiary : XA; —A—A—A

(max. 6 combinations if 3 different A's)
ACH-CHA, or A,C—CA,—CA,
Quaternary: XA, ~A-A—A-A or A(A);
(max. 16 combinations if 4 different A's)
On terminal atoms: A —A-X

In any bond: A—A—A-X-A

In chains: A-A-A—XA;; A-A-A-A XA,
Quaternary centres:

CA,—ACH-CHA, and A,C—CA,

(max. 6 combinations if 4 different A's)
Breaks a cyclic o- or any m-bond

Makes a cyclic o- or m-bond

Breaks a 0- or m-bond and inserts it anywhere else in the molecule

A-CH, A\
e

A-NH,— A-N\r{J

H,0 ({;ﬂ

Chemical Space Travel

Ruud van Deursen and Jean-Louis Reymond!

ChemMedChem 2007, 2, 636640

Table 3. Examples of chemical space travel between different molecules.
From: To: Cubane Aspirine WX Adenosine Sucrose
Cubane - 10 18 23 (1) 19

I Aspirine 10% - 14 21 15
VX 13 17 (1) - 31 (1) 18
Adenosine 17 27 18* - 14

| ] \ Sucrose 18* 22 (1) 27 29 (1) -

) | | ! Penicillin G 19* 13* 14* 23 19*

i ——a Strychnine 21* 7% 20 26 2
Colchicine 27 22* 21 26 18
Tetracycline 28* 20 25% 49 19
Vitamin K 30* 24* 30* 34% 28*

10/26/2016
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Descriptors-based chemical space

descriptor,
Each object (molecule, reaction,
interaction pattern) is represented
by a vector whereas the metrics is o

defined by distance or similarity descriptor,

/ descriptor,;

descriptor,

measures

Descriptors-based chemical space

descriptor,
. . . . DAB
Distance in chemical space is used as a
measure of molecular “similarity” and
“dissimilarity”

B
descriptor,

/ descriptor;

descriptor,

17



Popular Similarity / Distance measures

e Similarity :
— Tanimoto coefficient
— Dice coefficient
— Cosine coefficient

e Distance:
— Euclidean
— Manhattan
— Soergel

Descriptors-based chemical space

Biological Activity = f (Physicochemical properties )

logl/C =a(log P)>+blog P +co +dE, + const

Physicochemical properties can be broadly
classied into three general types:

* Electronic (o)
* Steric (E;) I,
* Hydrophobic (logP) Corwin Hansch

36

10/26/2016
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Descriptors-based chemical space

logl/C=a(logP)?+blogP +po +6Es+ const

HO OH
HO, o, (’\rOH
o a.__l
HO™ ™ j/ "OH
HO™  HO

ELECTRONIC

Molecular Descriptors :

ensemble of topological, electronic, geometry parameters calculated directly
from molecular structure

Descriptor vector

Molecular graph

A
/
(o]
-Topological indices,
- Atomic charges,
i 8 » D, »

\
C
A\ 7
W= N\ - Inductive descriptors,
/C - Substructural fragments,
/N ——C\ - Molecular volume and surface, ... Di
c c
\N—//
c—cC

> 5000 types of descriptors are reported

\
4

=

—

—=
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Data visualization of descriptors-based chemical space

Data visualization =>
dimensionality reduction problem

Reduced feature space
(2D or 3D)

Data space
(N-dimensional)

Chemography:

Design and visualization of chemical space

i G7:M ofa dataset copty'inin;; 10 K
& activities fromDURe ¥ A
Similarity principle:

similar molecules possess similar properties

40

10/26/2016
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Chemical space representation: Activity Landscapes

logK of Lu®*L complexes

20

H. A. Gaspar, I. I. Baskin, G. Marcou, D. Horvath, A. Varnek Mol. Informatics, 2015, 34 (6-7), 348-356 41
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Chemical space visualization

oH
o

!
o L+ L 3+
Lt >

‘o

Generative Topographic Mappping of
the set of Lu?* binders
Contours correspond to different logK values

Weak binders Strong binders

H. A. Gaspar, I. I. Baskin, G. Marcou, D. Horvath, A. Varnek Mol. Informatics, 2015, 34 (6-7), 348-356

Network-like Similarity Graphs

Representation of the database as a graph

- each molecule is presented as as a node,
- two nodes are connected if they are similar enough (T>T,)

r-w&‘{-{“? ANy

°

t'mm u * s~...f|'_’

Database containing > 2700 ligands against 10 different targets extracted from DUD

Wasserman et al. J. Med. Chem., 2010, Vol. 53, No. 23

10/26/2016
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Chemical Space: how large is it ?

1 Comput Aided Mol Des (2013) 27:675-67%
DO 10 1007/510822-00 3-9672-4

Estimation of the size of drug-like chemical space based

on GDB-17 data

P. G. Polishchuk - T. 1. Madzhidov -
A. Varnek

e GDB-17 —computer-generated set of 1.66 *10!! structures containing up
to N =17 heavy atoms (L. Ruddigkeit et al. ] Chem Inf Model 2012, 52, 2864-2875)

e The number of structures corresponding to N=1, 2, 3, ..., 17 is available. This
alllows one to establish relationships between the number of structures (M)

and N

e Whatis a limited value of N ?

45

Chemical Space: how large is it ?

1000 -

Q)

0 2q93)50 75 100
numb heavy atoms

(PubChem)

median MW

o

Median MW vs number of heavy
atoms for the PubChem database

30-

logM

10

Compounds
® 1-11 heavy atoms
4 1217 heavy atoms
“l
ak
a'..
I...
e
0 10 20 30 36

number of heavy atoms

Extrapolation of the compounds number (M) as
a function of the number of heavy atoms (N)
based on data taken from GDB-17

logM = 0.584xNxlogN + 0.356

46
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Modeling background: Machine Learning

Activity = F (structure)
= F (descriptors)

47

Machine Learning:

different approaches to model description

Model Types
Input/output matching :kl'ggfl‘ifnear
*Unsupervised sLogical
*Semi-supervised «Structural
*Supervised
*Active .
«Multi-instant Duality of models
*Multi-task “* .Descriptor based
*Similarity based
Tasks / ,
«Classification Model’s Interference
-Regrt_essmn_ . *Single Task Learning
*Density Estimation sInductive Learning Transfer

48

10/26/2016
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Machine learning me

thods
Multiple Linear Regression (MLR) Neural Networks

k
Property = a,+ > a,-X,
i=1

Support Vector Machine

hyperplan

Decision Trees

49

Predictors:
Commericial and Public Software

simulationsplus, inc. (‘Ig? ‘

ACD/Labs |

MedChem Siudio” wammwenas
- - - -
ADMET Predictor e soassfomoes

I
Y |
+ Metabollsm

10/26/2016
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Predictive tools in SciFinder

@ SaFinder*
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7 Sabtamces i e e ]
Select AR Desslect A | fartby: CASArgetry Mo+
Subsstance et ad 2. Substance Dotal
1161799945 #1335

Callzm Caitn

predictions of > 20 physico-chemical
properties and NMR spectra for each
individual compound

Simances & Rascons
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ieep Me Pusted Rewits | Htory
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& SciFinder*

Welcame Alandre Vamek | Sgn
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Refine by Property Value @

1. Sedcct one o more propeties, Click each property to display
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,

Premcted propery logP for 9677 compounds AS A CONSENSUS OF APPLICARILE LOGAL MODELS

Liv i

| logP |\/AR | TRUST | REASON

A
b - Mone of the local models have applicability domains covering this compound
: 1.59 | 0546 | NONE - Individual models failed to reach unanimity - prediction variance exceeds 1.0% of
r the property range width
- There are too few (le5s than 5) local models containing molecule within
applicability domain - global consensus is preferred
313 |o127 | POOR - Furthermore, the other local models disagree with the prediction of the minority
: : containing compound inside their applicability domain
- Individual models failed to reach unanimity - prediction variance exceeds 1.0% of
the property range width
250 | 0.105 OF'TIMAI-_ - 52 .
Done.
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JOURNAL OF -

CHEMICAL INFORMATION
AND MODELING

pubs.acs.org/jdm

Machine Learning Methods for Property Prediction in
Chemoinformatics: Quo Vadis?
Alexandre Vamek®' and Igor Baskin

Review of existing  mathematical
approaches potentially useful but rarely
or never used in chemoinformatics

Main Challenges of Machine-Learning in

Chemoinformatics

In silico design of new molecules
(" inverse QSAR")

Predictive

Incompleteness of molecular
performance

descriptors

™~

Accounting for multiple species
(conformers, tautomers, ...)

» small and diverse datasets

 large and diverse datasets

* applicability domain

* Training and test sets
belonging to different data

Machine-
Learning
methods

domains

® Construction of "optimal"
training sets

Functional endpoints

54
AVarnek, I. Baskin. J. Chem. Inf. Mod. 2012, 52 (6), 1413-1437

10/26/2016
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Guide to choose machine learning method to solve
chemical problems

Different features of data

(inner circle)

Distribution
in Lty Typesand

. : Complexity
Chemical * prexity

Space | Data

\s” Applicability p
Nod€ agy

Challenges of chemoinformatics

(outer circle)

55

Chemoinformatics Tools and the Appropriate Machine

Learning Concepts and Methods

STt > (Rl Gy M A Qi kg
available uﬂy
I | Incyease of the predictive f models Ensembie leaming**! Difierent methods of combining classifiers™ metaVote (1)
built on small and diverse data sets Bagging® metaBagging (I¥), adabag

(R}

Boosting {classificatzon )}t meta’ AdaBoonM1I (1),
ada, adabag (R)

Toosting (regression)*! meta/ AddinveRegression
()
GAMBoost, mboast (&)

Stacking!® ; 207

Random subspace®® metaRandomSubSpace
()

Random forest™ trees RandomForest (W)
randomForest ()

Semi-supervised and | TSVM (transductive SVM)P7 28550 SVMIapht'*
transductive leaming®*. SGT (Spectral Graph b SG g’

Semil {Semi-supervised Leaming b Semil =

LapSWVM {Laplscian SVM), 7 Semi-supervised learning

based on one-class classification’™ and ensemble

learning'®*

A. Varnek, I. Baskin. J. Chem. Inf. Mod. 2012, 52 (6), 1413-1437 o6
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Chemoinformatics and "Sister" Disciplines:

Machine Learning, Chemometrics and Bioinformatics

57

Chemoinformatics vs Machine Learning

Chemoinformatics is a very specific area of ML application. The
specificity of chemoinformatics results from:

e the nature of chemical objects (molecular graphs),

e the complexity of the chemical universe,

chemical data result from an explorative process rather than from specially organized
sampling. Hence, they cannot be considered as representative, independent and identically
distributed sampling from a well defined distribution. Special approaches are needed:
applicability domain, active learning, ...

e a possibility to account for an extra-knowledge, i.e., relationships
between different properties issued from physicochemical
theory.

58
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Chemoinformatics vs Chemometrics

Chemometrics is the chemical discipline that uses mathematical,
statistical and other methods

* to design or select optimal measurement procedures and
experiments, and

e to provide maximum relevant chemical information by analysing
chemical data.

L. Massart, Chemometrics: a textbook, Elseler, NY, 1988

Chemoinformatics vs Chemometrics

Generally, chemometrics requires no information about chemical
structure and, therefore it overlaps with chemoinformatics only in
the area of application of machine learning methods.

It is widely used in experiment design, chemical engineering,
analytical chemistry and treatment of spectra — fields where an
exhaustive treatment of multivariate data is needed.

10/26/2016
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Chemoinformatics vs Bioinfoormatics

Chemoinformatics - small molecules (2D molecular graphs)

Bioinformatics - large biological molecules (1D and 3D representation)

Combination of bio- and chemo-informatics approaches

- Docking: protein structures could be generated by bioinformatics tools,
whereas some scoring functions involve vector representation of ligands

- Protein-Ligand descriptors or fingerprints based on available 3D information
about protein-ligand complexes,

Chemoinformatics:

intersection of chemistry, computer science, mathematics,
biology, material science, ...

Is Chemoinformatics an individual scientific discipline or just a

mixture of methods and concepts imported from different fields ?

Chemoinformatics is an individual scientific discipline
characterizing by its own molecular representations
and basic concept — chemical space paradigm. It
interfaces with graphs theory, machine-learning, QM

and FF approaches in its various applications.

10/26/2016
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63
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