

Life Science Informatics

Chemical Space Networks and SAR Visualization

Martin Vogt, Jürgen Bajorath Life Science Informatics, B-IT University of Bonn

January 11, 2017

Coordinate-based
 chemical space design

Coordinate-free

representations

- Coordinate-free
 representations
- Molecular networks

Dopamine D4 receptor ligands

- Coordinate-free
 representations
- 'Chemical space networks'
 - similarity-based compound networks
 - nodes: compounds
 - edges: pairwise similarity relationships

 exploring biologically relevant chemical space

Chemical Space Networks (CSNs)

- CSNs: immediate graphical access and interpretability
- Quantitative analysis
 - statistical concepts from network science
 - network properties

Network Properties

Clustering coefficient

Path length

Community structure

Network density

Degree assortativity

Modularity

Clustering Coefficient

- Clustering coefficient: degree to which neighbors of a given node are connected to each other
- Clustering coefficient of a network: average of all node coefficients

Network Density

• **Network edge density** defined as the:

(Number of observed edges) / (Number of possible edges)

Degree Assortativity

- Assortativity: defined as the correlation coefficient between the degree of pairs of connected nodes
- Hubs lead to disassortative networks

Assortativity and Homophily

- Assortativity: defined as the correlation coefficient between the degree of pairs of connected nodes
- Homophily principle from network science: nodes with similar latent characteristics are more likely connected than others (social networks)
 - *latent characteristic* of CSNs: **compound activity**
 - activity annotation through node coloring: **SAR visualization**
- High assortativity is a consequence of homophily

Modularity

- Modularity measures global separation of nodes into communities (clusters)
- 'Small world' character
- Compound communities in CSNs → SAR analysis

CSNs of Different Design

Similarity as a design variable

Threshold CSN (THR-CSN)

- continuous similarity metric (Tanimoto coefficient, Tc)

Matched Molecular Pair CSN (MMP-CSN)

- substructure-based similarity criterion
- Tversky-CSN (TV-CSN)
 - asymmetric similarity relationships

Universal CSN Implementation

- Java universial network/graph framework (JUNG)
- Fruchterman-Reingold layout algorithm

THR-CSNs

- A Tc matrix can be transformed into many different CSNs
- Each CSN is associated with a specific similarity threshold

THR-CSNs

- Threshold values and edge density are inversely related
- Network properties strongly depend on edge density

Increasing density

Increasing network density:

- Increase of
 - clustering coefficient

THR-CSN of 1000 randomly selected ZINC compounds (MACCS Tc)

Increasing network density:

- Increase of
 - clustering coefficient
- Decrease of
 - degree assortativity

Increasing network density:

- Increase of
 - clustering coefficient
- Decrease of
 - degree assortativity
 - modularity

Increasing network density:

- Increase of
 - clustering coefficient
- Decrease of
 - degree assortativity
 - modularity
 - shortest path length

Comparison of THR-CSNs

- THR-CSNs typically display high modularity and assortativity at low network density
- High modularity and assortativity characterize THR-CSNs with clear compound community structures
- THR-CSNs are difficult to compare at constant Tc values, due to compound class-dependent similarity values
- THR-CSNs are best compared at constant low density, e.g. 2.5%

Comparison of THR-CSNs

Life & Medical Sciences Institute

THR-CSNs

- for data sets of varying diversity (120 sets of 1000 ZINC cpds)
- for **bioactive compounds** (21 ChEMBL data sets, 522-973 cpds)
- compared at constant edge density (2.5%)

 At constant network density, bioactive compound CSNs have larger clustering coefficients

 At constant network density, bioactive compound CSNs have higher modularity

 At constant network density, bioactive compound CSNs have higher assortativity

- Characteristics at low network density
 - large clustering coefficients
 - high assortativity
 - high modularity
 - extensive community structures
 - homophily principle as a major determinant of THR-CSN topology when charting biologically relevant chemical space (similar to social networks)
 - shared activity as a latent characteristic

Substructure-Based Similarity

- Alternative CSN representation designed by applying the matched molecular pair (MMP) formalism
- Formation of MMPs as a similarity criterion: MMP-CSN

MMP-CSNs vs. THR-CSNs

THR-CSN

- Tanimoto similarity
- varying similarity threshold / varying density

MMP-CSN

- substructure-based similarity
- constant density

CSN comparison

- MMP-CSN, determine edge density
- THR-CSN, adjust threshold to match MMP-CSN density

- 154 activity classes (ChEMBL)
- Network property analysis / key findings
 - comparably high assortativity and modularity
 - surprisingly similar global topologies
 - community structures / small world character

Exemplary Comparison

- Modularity (and clustering coefficient)
 - large values / high correlation

Assortativity

- large values / low correlation

- Network property analysis / key findings
 - **assortativity** as the major distinguishing feature
 - despite similar global topologies similarity relationships in compound communities systematically differ

Homophily principle influences THR- and MMP-CSNs in different ways

CSNs with Asymmetric Similarity

- Asymmetric similarity measures
 - assign different weights to features of A and B
 - comparison of A to B and B to A yields different values
 - directed similarity relationships

Tversky Index(Tv)

Tanimoto coefficient (Tc)

Tc (A,B) =
$$\frac{c}{a+b-c}$$

a: features of Ab: features of Bc: features of A and B

Tversky index (Tv)

Tv
$$(A,B,\alpha,\beta) = \frac{c}{\alpha(a-c)+\beta(b-c)+c}, \alpha,\beta \ge 0$$

 α and β are weighting factors for the distinguishing features of A and B, respectively

Normalization of Tv

Tv can be normalized to enable single-parameter variation

 $\alpha + \beta = k$ for an arbritary value k > 0

Tv can be expressed using the single parameter α

$$\mathsf{Tv}_{k}(\mathsf{A},\mathsf{B},\alpha) = \mathsf{Tv}(\mathsf{A},\mathsf{B},\alpha,k-\alpha)$$
$$= \frac{c}{\partial(a-c) + (k-\partial)(b-c) + c}, \partial^{\hat{\mathsf{I}}}[0,k]$$

k = 2: Tv becomes Tc if equal weights of 1 are put on A and B

TV-CSN: Asymmetric Threshold CSN

Life Science Informatics

universität**bonn**

TV-CSN Asymmetry

Edges are directed

Nodes have in- and out-degrees

Node in-degree: 2

Node **out**-degree: 4

Network Properties: THR- vs. TV-CSNs

 Major difference - decrease in out-degree assortativity with increasing asymmetry

Network Properties: THR- vs. TV-CSNs

- Successive formation of nodes with uneven degrees
- Emergence of hubs in TV-CSNs

Emergence of Hubs in TV-CSNs

Nodes are scaled in size according to their out-degrees

Asymmetry and Scale-Free Nature

- Hubs often indicate scale-free network character
- In scale-free networks, the degree distribution follows a power law:

$$p(k) \propto k^{-\gamma}$$

- γ : constant with values of $2 \le \gamma \le 3$ for scale-free networks

Number of TV-CSNs of 36 activity classes fitting a power law with $2 \le \gamma \le 3$

	α value					
	1.0	1.2	1.4	1.6	1.8	2.0
TV-CSNs	2	9	9	11	16	17

Hubs as Focal Points of SAR Analysis

Nodes are scaled in size according to their out-degrees

Hubs as Focal Points of SAR Analysis

Hubs as Focal Points of SAR Analysis

From hubs

(i) pathways with compounds of increasing size can be traced

(ii) potency progression can be monitored

Lead optimization scenario

Conclusions

Chemical space networks

- paradigm for coordinate-free chemical space representation
- characterization using statistical concepts from network science
- designed for analyzing active compounds and SARs

THR-CSNs

- homophily principle as a major determinant of CSN topology
- CSNs are best studied and compared at constant low edge density
- THR-CSNs of random and bioactive compound samples are distinct

Conclusions

MMP-CSNs

- substructure-based similarity relationships
- THR- and MMP-CSNs have similar topologies and small world character
- homophily principle affects THR- and MMP-CSNs in different ways

TV-CSNs

- asymmetric similarity relationships
- emergence of hubs and scale-free character
- pathways of compounds of increasing size/complexity centered on hubs

Life Science Informatics

Acknowledgment

Magdalena Zwierzyna Bijun Zhang Mengjun Wu Dagmar Stumpfe Gerald Maggiora

