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Big Data Sources

Do we really have Big Data in chemistry?
What kind of large data do we have?



Big Data definition

Big data is a term for data sets that are so large or
complex that traditional data processing applications
are inadequate (Wikipedia)



Large Chemical Database
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Data Types

ChEMBL v. 21! Data mined from literature and PubChem HTS assays

BindingDB? Experimental protein-small molecule interaction data
PubChem? Bioactivity data from HTS assays
Reaxys* Literature mined property, activity and reaction data

SciFinder (CAS)> Experimental properties, 1*C and 'H NMR spectra, reaction data

GOSTARS® Target-linked data from patents and articles
AZ IBIS’ AZ in-house SAR data points
OCHEM?® Mainly ADMET data collected from literature

1) Papadatos G, et al. ) Comput Aided Mol Des 2015;29(9)885-96.
2) Gilson MK, et al. Nucleic Acids Res 2016;44(D1):D1045-53.

3) Kim S, et al. Nucleic Acids Res 2016;44(D1):D1202-13.

4) http://www.elsevier.com/solutions/reaxys

5) http://www.cas.org/products/scifinder

6) http://www.gostardb.com

7) Muresan S et al. Drug Discov Today 2011;16(23-24):1019-30.
8) Sushko I, et al.. ) Comput Aided Mol Des 2011;25(6):533-54.




Big Data sizes

Big data is a term for data sets that are so large or complex that traditional
data processing applications are inadequate (Wikipedia)
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Compute Information. Science, 332(6025), 60 —65. http://www.martinhilbert.net/WorldinfoCapacity.html

CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=29452425




Large Chemical Database
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Big Data are relative to a field

 Methods to analyze such data do not exist

* We may not sufficient technical resources (speed, memory) to
use the existing methods

 We may not have knowledge to use the existing methods
Thus the Big Data can appear due to:

Physical challenges (hardware)
Knowledge challenges (informatics, software)



Example of Big Data

Which data are really big ones?



What data sizes are “big” ones?

“General melting point prediction based on a diverse compound data set and
artificial neural networks” Karthikeyan et al. J. Chem. Inf. Model. 2005, 45(3),
681-90. N =4173

— Large data set ~50k
- Big data set ~250k



Melting Point Datasets

Bergstrém 277 data
Bradley 2886
OCHEM 22404
Enamine 21883

i Bergstrom
i Bradley
I OCHEM

kil Enamine

Tetko et al J. Chem. Inf. Model. 2014, 22;54(12):3320-9.



275k Melting Point Datasets

Bergstrom 277 data
Bradley 2886
OCHEM 22404
Enamine 21883
PATENTS 228079 |

u Bergstrom
u Bradley

- OCHEM

u Enamine
I Patents

COMBINED: OCHEM + Enamine + Bradley + Bergstrom

Tetko et al J. Chemoinformatics, 2016, 8, 2.



Extraction of MP information from patents

[0835] To a solution of 2-amino-4,6-dimethoxybenzamide (0.195 g, 0.99 mmol) and 5-(2-
(tert-butyldimethylsilyloxy)ethoxy)-6-phenylpicolinaldehyde (0.355 g, 0.99 mmol) in N,N-
dimethyl acetamide (10 ml), was added NaHSO3 (0.264 g, 1.49 mmol) and p-toluenesulfonic
acid monohydrate (0.038 g, 0.198 mmol). The reaction mixture was heated at 120° C. for 16 h.
After that time the reaction was cooled to rt and the solvent was removed under reduced
pressure. The reaction mixture was then diluted with water (150 mL) and neutralized with
NaHCO3. The precipitated solids were collected by filtration, washed with water and dried to
give 2-(5-(2-(tert-butyldimethylsilyloxy)ethoxy)-6-phenylpyridin-2-yl)-5,7-
dimethoxyquinazolin-4(3H)-one (0.500 g, 94%) as an off-white solid: 1H NMR (400 MHz,
DMSO-d6) 6 11.08 (s, 1H), 8.35 (d, J=8.98 Hz, 1H), 8.21 (d, J=2.34 Hz, 2H), 7.82 (d, J=8.59 Hz,
1H), 7.44-7.52 (m, 3H), 6.81 (d, J=2.34 Hz, 1H), 6.58 (d, J=2.34 Hz, 1H), 4.24-4.32 (m, 2H),
3.94-4.00 (m, 2H), 3.92 (s, 3H), 3.86 (s, 3H), 0.85 (s, 9H), 0.08 (s, 6H); ESI MS m/z 534 [M+H]
+.

http://www.google.com/patents/US20140140956




Extracting of melting points from patents

Raw patents

XML patent Paragraphs Experimental
epresentation and headings sections

e

Identification of chemical
entities and melting
points (LeadMine)

>

Melting point associated
with product of
experimental section

—>]

Melting point
values normalized

F of compou

associations

D nd
and melting point

NextMove Ltd

, UK




Extraction of MP information from patents

[0835] To a solution of 2-amino-4,6-dimethoxybenzamide (0.266 g, 1.36 mmol) and 3(5-(methylsulfinyl)thiophen-
2-yl)benzaldehyde (0.34 g, 1.36 mmol) in NN-dimethylacetamide (17 mL) was added NaHSO3 (0.36 g. 2.03 mmol)
and_(0.0523,027l : at 1t Th reacuonmxmcwashwcdatlwc for

Basiot iy T Recows f W ] 4 =2 @@i Tags-. ﬂmg

6 - 10 of 275133 << 5 | itemsonpage [2 ] of 55027 > >>
@ Melting Point = 198.0 - 201.0 (in °C)
Tetko, L.V. et al
The development of models to predict melting and pyrolysis p... =
N: AUTO_266033 i
Journal of cheminformatics 2016; 8 () 2 (i)
2,5-Di(2,2-diethoxyethyl)-1,4-diketo-3,6-di(4-bromophenyl)pyrrolo[3,4-c]pyrrole RecordID: R21026969 | 4]
MoleculelD: M84183905 02:54, 12 Aug 15/ 00:38, 20 Aug 15
‘% Public record dan2097 =
® Melting Point > 400.0 (in °C)
Tetko, I.V. et al
The development of models to predict melting and pyrolysis p... =
N: AUTO_266032 &
Journal of cheminformatics 2016; 8 () 2 =
1,4-Diketo-3,6-di(3-thiophenyl)pyrrolo[3,4-c]pyrrole RecordID: R21026968 | Z)
MoleculelD: M84183904 02:54, 12 Aug 15 / 00:38, 20 Aug 15
i 2097
molecule profile i Public record dan =




Package
name

Functional
Groups

QNPR
MolPrint

Estate count
Inductive
ECFP4

Isida
ChemAxon
GSFrag
CDK
Adriana
Mera, Mersy

Dragon

Modeling of MP data

Type of
descriptors

integer

integer
binary
float
float
binary
integer
float
integer
float
float
float
float

Number of
descriptors

1502
631
T

1024
5886

498

1138

239

200

571
1647

Matrix size,
billions

0.18
0.45
Ca0s D
0.19
0.02
0.31
1.75
0.15
0.34
0.07
0.06
0.17
0.49

Non zero
values,
millions

6.3
8.1
10
11
12
18
23
24
27
32
61
183

33

49
7200
14

25
37
1.5
5.7

1.3
1.1
1.5



Large - Big

* Neural Networks was too slow (ensemble training!)
- SVM was used

e Support of parallel calculations (48 core)
e Support of grid analysis (>1000 CPUs)
e Storage of full data matrix -> sparse data matrix



Prediction errors for Bergstrom drug like compounds
using models developed with different training sets
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277 (Bergstrom) 4k (Karthikeyan) 50k (Literature) 275k (Patents)

training set size



Prediction of Huuskonen set using ALOGPS logP
and MP based on 50k measurements

logS = 0.5 —-0.01(MP-25) — log Kow

Predicted property: Aqueous Solubility modeled in log(mol/L)

Training method: MLRA

Data Set

o

R2

q2

RMSE

MAE

o Training set: logS Huuskonen | 1311 records

0.838 + 0.009

0.81 £ 0.01

0.9 +0.02

0.71 £ 0.01

A
™4

Measured value




Prediction of Huuskonen set using ALOGPS logP
and MP based on 230k measurements

logS = 0.5 —-0.01(MP-25) — log Kow

Predicted property: Aqueous Solubility modeled in log(mol/L)

Training method: MLRA

Data Set

=

R2

q2

RMSE

MAE

o Training set: logS set

1311 records | 0.842 + 0.009

0.83 £ 0.01

0.84 + 0.02

0.64 + 0.02

A

0 4

-10 ¢ (o0

-10 -8

-6

-4 -2 0

Measured value




Big Data Quality and Complexity

Why is it very important?
How domain specific analysis could help?
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Susceptibility of CPM-based HTS to screening compound-based interference. (A) Assay schematic for the CPM-based HTS used in this
study. The assay measures the HAT activity of the Rtt109-Vps75 complex, which catalyzes the transfer of an acetyl moiety from acetyl-CoA
to specific lysine residues on the Asf1-dH3-H4 substrate complex to produce acetylated histone residues and coenzyme A (CoA). Addition
of the thiol-scavenging probe CPM leads to a highly fluorescent adduct by reacting with the CoA byproduct, which is used to quantify HAT
activity via fluorescence intensity measurement. (B) Representative assay interference chemotypes identified during post-HTS triage.

Dahlin et al J. Med. Chem. 2015, 58, 2091-2113.



Promiscuous compounds filters

Journal of

Medicinal |
Chemistry SS——

Rules for Identifying Potentially Reactive or Promiscuous
Compounds

Robert F. Bruns* and lan A. Watson

Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana 46285, United States
© Supporting Information

ABSTRACT: This article describes a set of 275 rules, developed over
an 18-year period, used to identify compounds that may interfere with
biological assays, allowing their removal from screening sets. Reasons
for rejection include reactivity (e.g, acyl halides), interference with
assay measurements (fluorescence, absorbance, quenching), activities
that damage proteins (oxidizers, detergents), instability (e.g., latent
aldehydes), and lack of druggability (e.g, compounds lacking both
oxygen and nitrogen). The structural queries were profiled for
frequency of occurrence in druglike and nondruglike compound sets
and were extensively reviewed by a panel of experienced medicinal # Subfamilies Active

chemists. As a means of profiling the rules and as a filter in its own

right, an index of biological promiscuity was developed. The 584 gene targets with screening data at Lilly were assigned to 17
subfamilies, and the number of subfamilies at which a compound was active was used as a promiscuity index. For certain
compounds, promiscuous activity disappeared after sample repurification, indicating interference from occult contaminants.
Because this type of interference is not amenable to substructure search, a “nuisance list” was developed to flag interfering
compounds that passed the substructure rules.

% Fail

# Compounds

=il Cpds

- Rejection

e Demerits




Promiscuous compounds filters

Journal of
Medicinal J. Med. Chem. 2010, 53, 2719-2740 2719
Chemistry DOI: 10.1021/jm901137j

Article

New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening
Libraries and for Their Exclusion in Bioassays

Jonathan B. Baell*™* and Georgina A. Holloway'*

TThe Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia and *Cancer Therapeutics-CRC
P/L, 4 Research Avenue, La Trobe R&D Park, Bundoora, Victoria 3086, Australia

Received July 31, 2009

This report describes a number of substructural features which can help to identify compounds that
appear as frequent hitters (promiscuous compounds) in many biochemical high throughput screens. The
compounds identified by such substructural features are not recognized by filters commonly used to
identify reactive compounds. Even though these substructural features were identified using only one
assay detection technology, such compounds have been reported to be active from many different
assays. In fact, these compounds are increasingly prevalent in the literature as potential starting points
for further exploration, whereas they may not be.



Pan Assay INterference compoundS (PAINS)

Filters

AlphaScreen™

color quenching

102
singlet oxygen quenching . m 520 620 nm
auto-fluorescence /%ﬂ (\N7
covalent binding ‘

inherently “sticking”
compounds

disrupt the interaction
between the tag of the R, Tt
protein and binding site of
the detection system

~ 500 filters based on N =93212 compounds

Baell and Holloway, J. Med. Chem., 2010, 53:2719-40.



Structural & Toxic Alerts at http://ochem.eu

Article:

« Screening of compounds against published " All articles
groups, frequent hitters

« Filter alerts by endpoints or publications
- Create or upload custom SMARTS rules

>500 functional groups
>2.3k alerts in total

All endpoints

All endpoints

Acute Aquatic Toxicity
Dummy

Skin sensitization

Non-genotoxic carcinogenicity

Genotoxic carcinogenici

Reactive, unstable, toxic
Potential electrophilic agents

Idiosyncratic toxicity (RM formation)
Custom filters

Functional groups
Promiscuity

Developmental and mitochondrial toxicity

PAINS compounds

, mutagenici

Biodegradable compounds
Nonbiodegradable compounds

AlphaScreen-HIS-FHs
AlphaScreen-FHs
Chelating agents
AlphaScreen-GST-FHs

-~
v

)

All articles

1988 Ashby

1990 Hermens

1992 Verhaar,H.J.M.

2004 Gerner

2005 Kazius

2005 CheckMol
2005 Kalgutkar
2005 Bailey

2008 Enoch

2008 Benigni

2011 Maybridge
2011 Enamine

2011 "Ontario”_filters
2011 ChemDiv

2011 Life_Chemicals
2011 Enoch

2012 Tetko, I.V.

Sushko et al, J. Chem. Inf. Model, 2012, 52(8):2310-6.

1994 Payne
1994 Barratt

—
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Identification of AlphaScreen-HIS Frequent Hitters
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Schorpp et al J. Biomol. Screen. 2014, 9, 715-726.



Mode Of Action of AlphaScreen-HIS Frequent Hitters
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Schorpp et al J. Biomol. Screen. 2014, 9, 715-726.



Bio Assays Ontology relationships

biological

assay biology
component

" assay screened
entity comp.

*} assay method
component

measure

*| assay bioassay
component

~
/  subClassOf vpa measure group' /

*| assay endpoint 5 {sadpaintof Legend
component {
endpoint D BAO main components
/ Q BAO ontology class
Lt assay format . i
component is assay format of More subclasses
i __ Primitive/defined class

—P  subClassOf relation
— P> some/only relationship
— inferred relation

Abeyruwan, U. et al “Evolving BioAssay Ontology (BAO): Modularization, Integration
and Applications,” Journal of Biomedical Semantics, vol. 5, no. 1:S5, 2014.



Annotation of large chemical spaces

Big Data, which have been always in chemistry.



Virtual chemical spaces
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Virtual chemical spaces
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Virtual chemical spaces

Synthesizable ~10%* and total “drug — like” space is ~ 10°°



Annotation of compounds

ALOGPS 2.1* (prediction of logP and water solubility of chemical
compounds)

~ 100,000 molecules per minute
Annotation of GDB-17 will take ~3 years of calculations using one core

~10 minutes on Leibniz Supercomputing Centre with 241,000 cores

*Tetko, I.V. J. Chem. Inf. Comput. Sci. 2001, 41, 1407-1421.



We can’t predict unpredictable!




New machine learning approaches

Which methods can help us with Big Data?



Data Sets with Varying Confidence Levels

All available activity data

|

Target organism (homo sapiens)

|

Assay relationship type (Direct);
Assay confidence score (9)

Compound ‘l'
data sets from Target class (single protein)

ChEMBL18 J
Measurement types (K; or IC5))

|

Standard activity relation (=)

|

Standard activity unit (n/\)

|

Activity comments (remove ‘inactives’)

Set 1

1,291,676

Set 2
936,924

Set 3
605,206

Set 4
605,056

Set 5
179,161

Set 6
150,379

Set7
150,211

Courtesy of Prof. J. Bajorath

Set 8

148,373
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Multi-task learning

Problem:

e prediction of tissue-air partition
coefficients

e small datasets 30-100 molecules
(human & rat data)

Results:

simultaneous prediction of several
properties increased the accuracy
of models

Mean Absolute Error

one several

Varnek, A. et al J. Chem. Inf. Model. 2009, 49, 133-44.

E Fat

O Brain
M Liver
O Kidney
B Muscle




Renaissance of neural networks

Deep learning
— Massive neural networks with thousands of neurons and layers
— New learning methods (dropout technique)

Examples of the use of deep learning technology:
— Recognition of Chinese characters with human accuracy
— Victory in Go-tournament
— Diagnostics of breast cancer

Baskin, I.I.; Winkler, D.; Tetko, I.V. A renaissance of neural networks in drug discovery.
Expert opinion on drug discovery 2016, 11(8):785-95.



Massively Multitask Networks for Drug Discovery

Bharath Ramsundar™ °
Steven Kearnes™!
Patrick Riley®

Dale Webster®

David Konerding®

Vijay Pande’

("Equal contribution, fStanford University, °Google Inc.)

259 datasets

Total ~ 40M datapoints for 1.6M compounds

128 PubChem
17 MUV

102 DUD-E
12 Tox21

Descriptors:
ECFP4

RDKit

RBHARATH @ STANFORD.EDU
KEARNES @ STANFORD.EDU
PFR @ GOOGLE.COM

DRW @GOOGLE.COM
DEK@GOOGLE.COM

PANDE @ STANFORD.EDU

Softmax nodes, one per dataset

N

Hidden layers
1-4 layers with 50-3000 nodes
Fully connected to layer below, rectified linear activation

Input Layer
1024 binary nodes

Figure 1. Multitask neural network.

http://adsabs.harvard.edu/abs/2015arXiv150202072R




Multitask Networks Learning Results

Massively multitask networks obtain predictive accuracies significantly
better than single-task methods.

The predictive power of multitask networks improves as additional tasks
and data are added.

The total amount of data and the total number of tasks both contribute
significantly to multitask improvement.

Multitask networks afford limited transferability to tasks not in the
training set.

http://adsabs.harvard.edu/abs/2015arXiv150202072R




Multitask benefit from increasing tasks and data

independently.
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S , — 23M
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0.01 - E
o
d/ O/
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http://adsabs.harvard.edu/abs/2015arXiv150202072R




Secure Information Sharing

How can we share information but not data?
How can we enable cooperation between industries?



Secure Sharing of information

CINF/COMP workshop was organized during ACS in 2005 by Prof. Oprea
Various structure representation (descriptors) were proposed
Several methods for secure sharing were introduced

But in the theoretical limit*
— SMILES representation of molecules: CCC, CNCCC, clcccccl
— Zipping of structures requires < 1 bit per atom
— Structure with 32 atoms requires < 32 bits

— Any descriptor or their combination with > 32 bits could be used to decode a
molecule (in theory)

*Tetko, I.V.; Abagyan, R.; Oprea, T.l. J. Comput. Aided. Mol. Des. 2005, 19, 749-764.



Currently used technologies

“Honest broker”
— Receives descriptors (or structures)
— Develop models and do not reveal the underlying data

Sharing relationships between structures
— Matched Molecular Pairs (changes in property due to change of groups)

Sharing developed models
— Structural alerts

— Computational prediction models

Sharing reliable predictions (surrogate data)*

*Tetko, I.V.; Abagyan, R.; Oprea, T.l. J. Comput. Aided. Mol. Des. 2005, 19, 749-764.



Multi-party secure computation

Journal of Computer-Aided Molecular Design (2005) 19: 739-747
DOI 10.1007/s10822-005-9011-5

Secure analysis of distributed chemical databases without data integration

Alan F. Karr®*, Jun Feng®, Xiaodong Lin®, Ashish P. Sanil®, S. Stanley Young®

& Jerome P. Reiter®

National Institute of Statistical Sciences Research, Triangle Park, NC 27709-4006, USA; °Duke University,
Durham, NC 27708, USA; “University of Cincinnati, Cincinnati, OH USA; dBristol-M yers Squibb, Princeton,
NJ USA



Secure summation

A 1 Final step: calculate and share
o v = (s¢R) (mod 1024) = -837 (mod 1024) = 187
.=
R =1003

Transmits, = (R +v,) (mod 1024) = 8

Agency 2
V, =95

Transmit s, = (s, + v,) (mod 1024) = 13

Agency 3
v,= 163

Transmit s, = (s, + v;) (mod 1024) = 166




Conclusions

Expectations

v

v
v

Improved prediction of properties, and
activities
Improved poly-pharmacology

Search of new chemistry (top down
exploration and de novo design)

Prediction of in vivo enpoints

Challenges

v

v

AN N NN

New machine learning approaches (deep
learning)

Integration of diverse data and a priory
knowledge (ontology, pathways, in vitro, in
vivo, simulation results, different errors,
etc.)

Applicability domain
Secure data sharing
Data visualization
De novo design



Further reading

 Tetko, I. V.; Engkvist, O.; Koch, U.; Reymond, J. L.; Chen, H., BIGCHEM:
Challenges and Opportunities for Big Data Analysis in Chemistry. Mol
Inform 2016, 35(11-12):615-621 (Open Access).

 Tetko, I.V.; Engkvist, O.; Chen, H. Does 'Big Data' exist in medicinal
chemistry, and if so, how can it be harnessed? Future Med Chem. 2016
8(15):1801-1806 (Open Access).
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