### **GDB** and the Chemical Space

- 1. GDB-17 and FDB-17
- 2. Visualization
- 3. Virtual Screening
- 4. Extension to larger molecules

#### gdb.unibe.ch



#### Jean-Louis Reymond 19 April 2017, BigChem BCN Meeting

The Chemical Space Project J.-L. Reymond, Acc. Chem. Res. 2015, 48, 722-730



L. C. Blum, J.-L. Reymond, J. Am. Chem. Soc. 2009, 131, 8732-3 (GDB-13);

L. Ruddigkeit et al., J. Chem. Inf. Model. 2012, 52, 2864-2875 (GDB-17)

#### Fragment Database FDB-17



Fragment Database FDB-17. R. Visini, M. Awale, J.-L. Reymond., J. Chem. Inf. Model. 2017, doi:10.1021/acs.jcim.7b000203

# Limit Complexity

| Table 1. Filtering criteria to r | educe GDB-17 to its | 4.6G fragment subset. |
|----------------------------------|---------------------|-----------------------|
|----------------------------------|---------------------|-----------------------|

| Scaffolds                                   | FG Density                             | Problematic/S              | uperfluous FGs            |
|---------------------------------------------|----------------------------------------|----------------------------|---------------------------|
| $\leq$ 3 rings                              | $\leq$ 5 Nitrogen + Oxygen atoms       | No aldehydes               | No aromatic ring > 6 ator |
| $\leq$ 2 small (3- or 4-<br>membered) rings | $\leq$ 1 positive charge at neutral pH | No epoxides, aziridines    | ≤ 1 C≡N (cyanide)         |
| $\leq$ 2 quaternary centers                 | $\leq$ 1 negative charge at neutral pH | No O-(C=O)-O (carbonate)   | No non-aromatic C=C       |
| $\leq$ 4 stereocenters                      | $\leq$ 3 H-bond acceptor atoms         | No O-C=N (imidate)         | No C≡C (triple bonds)     |
| $\leq$ 3 rotatable bonds                    | $\leq$ 2 H-bond donor atoms            | No NO <sub>2</sub> (nitro) | No halogens               |

## **Even Sampling**

value triplets (HAC, heteroatoms, stereocenters)



## **Property Profiles**



### **Nearest Neighbor Searches**



7

### **Understanding Molecular Diversity**

- 1. GDB-17 and FDB-17
- 2. Visualization
- 3. Virtual Screening
- 4. Extension to larger molecules





### **Molecular Quantum Numbers**



| Atoms            |    |
|------------------|----|
| Carbon           | 17 |
| Fluorine         | 0  |
| Chlorine         | 0  |
| Bromine          | 0  |
| Iodine           | 0  |
| Sulphur          | 0  |
| Phosphor         | 0  |
| Acyclic nitrogen | 0  |
| Cyclic nitrogen  | 1  |
| Acyclic oxygen   | 2  |
| Cyclic oxygen    | 1  |
| Heavy atom count | 21 |

#### **Bonds**

| Acyclic single bonds |  |
|----------------------|--|
| Acyclic double bonds |  |
| Acyclic triple bonds |  |
| Cyclic single bonds  |  |
| Cyclic double bonds  |  |
| Cyclic triple bonds  |  |
| Rotatable bonds      |  |
|                      |  |

| 3  | 8  |
|----|----|
| 0  | 3  |
| 0  | 0  |
| 18 | 11 |
| 4  | 3  |
| Ο  | Λ  |

| 18 | 11 |
|----|----|
| 4  | 3  |
| 0  | 0  |
| 0  | 4  |

#### Polar groups

| H-Bond donor atoms    | 3 1 |
|-----------------------|-----|
| H-Bond donor sites    | 3 1 |
| H-Bond acceptor atoms | 34  |
| H-Bond acceptor sites | 3 7 |
| Positive charges      | 1 0 |
| Negative charges      | 0 1 |
|                       |     |

#### Topology

| Acyclic monovalent nodes    | 3 | 6 |
|-----------------------------|---|---|
| Acyclic divalent nodes      | 0 | 2 |
| Acyclic trivalent nodes     | 0 | 2 |
| Acyclic tetravalent nodes   | 0 | 0 |
| Cyclic divalent nodes       | 8 | 6 |
| Cyclic trivalent nodes      | 9 | 6 |
| Cyclic tetravalent nodes    | 1 | 1 |
| 3-Membered rings            | 0 | 0 |
| 4-Membered rings            | 0 | 1 |
| 5-Membered rings            | 1 | 1 |
| 6-Membered rings            | 4 | 1 |
| 7-Membered rings            | 0 | 0 |
| 8-Membered rings            | 0 | 0 |
| 9-Membered rings            | 0 | 0 |
| ≥ 10 membered rings         | 0 | 0 |
| Atoms shared by fused rings | 7 | 2 |
| Bonds shared by fused rings | 6 | 1 |
|                             |   |   |

#### **GDB-17**



Visualization and Virtual Screening of the Chemical Universe Database GDB-17. L. Ruddigkeit, L. C. Blum, J.-L. Reymond, *J. Chem. Inf. Model.* **2013**, *53*, 56-65.





- > N-dimensional fingerprints:
  - APfp: 20 counts for atom pairs (shape)
  - MQN: 42 molecular quantum numbers
  - SMIfp: 34 counts for SMILES characters
  - Xfp: 55 counts for atom pairs with properties (pharmacophore)
  - Sfp: 1024-bit binary substructure fp
  - ECfp4: 1024-bit binary extended connectivity fp
- > Tools at gdb.unibe.ch
  - Web-browsers for DrugBank, ChEMBL, ZINC, PubChem, GDB-11, GDB-13, GDB-17
  - Mapplets (downloadable Java applications, ca. 100 Mb)
  - Similarity Mapplets (tailored mapplets by e-mail)
  - WebDrugCS (3D-viewer, platform independent, DrugBank)
  - WebMoICS (3D-viewer, platform independent, up to 5000 molecules from user)

Visualisation and subsets of the chemical universe database GDB-13 for virtual screening. L. C. Blum, R. van Deursen, J.-L. Reymond, *J. Comput. Aided Mol. Des.* **2011**, *25*, 637-647

A multi-fingerprint browser for the ZINC database. M. Awale, J.-L. Reymond, *Nucleic Acids Res.* **2014**, *42*, 234-239 The MQN-Mapplet: Visualization of Chemical Space with Interactive Maps of DrugBank, ChEMBL, PubChem, GDB-11 and GDB-13. M. Awale, R. van Deursen, J. L. Reymond, *J. Chem. Inf. Model.* **2013**, *53*, 509-518 Similarity Mapplet: Interactive Visualization of the Directory of Useful Decoys and ChEMBL in High Dimensional Chemical Spaces. Awale M, Reymond JL, *J. Chem. Inf. Model.*, **2015**, *55*, 1509-1516.

## **MQN-Mapplet**



The MQN-Mapplet: Visualization of Chemical Space with Interactive Maps of DrugBank, ChEMBL, PubChem, GDB-11 and GDB-13. M. Awale, R. van Deursen, J. L. Reymond, *J. Chem. Inf. Model.* **2013**, *53*, 509-518



d)

#### c)

#### Multi-Fingerprint Browser for Fragments

\*To make this page work, You have to enable <u>JavaScript</u> on your machine\*



Retrieved 500 neighbors of CC(=O)CCC2CC1[NH2+]CC1C(C)O2 from FDB-17 fragment set by ECfp4 using 49.413 seconds server time.



# **Similarity Maps**



Similarity Mapplet: Interactive Visualization of the Directory of Useful Decoys and ChEMBL in High Dimensional Chemical Spaces. Awale M, Reymond JL, *J. Chem. Inf. Model.*, **2015**, *55*, 1509-1516



Similarity Mapplet: Interactive Visualization of the Directory of Useful Decoys and ChEMBL in High Dimensional Chemical Spaces. Awale M, Reymond JL, *J. Chem. Inf. Model.*, **2015**, *55*, 1509-1516



Web-based 3D-visualization of the DrugBank chemical space Awale M and Reymond JL, *J. Cheminform.*, **2016**, doi:10.1186/s13321-016-0138-2.





WebMolCS: a Web-Based Interface for Visualizing Molecules in 3D Chemical Spaces. Awale M, Reymond JL, *J. Chem. Inf. Model.*, **2017**, doi:10.1021/acs.jcim.6b00690

#### Does this work?

- 1. GDB-17 and FDB-17
- 2. Visualization
- 3. Virtual Screening
- 4. Extension to larger molecules



High Quality Screening for Drug Discovery







## 3D-Shape and pharmacophore (xLOS)



Optimization of TRPV6 Calcium Channel Inhibitors Using a 3D Ligand-Based Virtual Screening Method. C Simonin, M Awale et al., *Angew. Chem., Int. Ed. Engl.* **2015**, *54*, 14748-14752.



Table S1: In vitro pharmacology profile of cis-22a on several ion channels.<sup>a</sup>

| Channel                                                 | % Inh. @ 10 µM                           |
|---------------------------------------------------------|------------------------------------------|
| TRP channels                                            |                                          |
| TRPV1 (agonist effect) (h)                              | $-15.5 \pm 0.7^{\circ}$                  |
| TRPV1 (antagonist effect) (h)                           | 29.6 ± 8.6                               |
| TRPV3 (antagonist effect) (h)                           | -11.5 ± 2.0                              |
| TRPV5 (antagonist effect) (r)                           | $79.9 \pm 1.4 \ (IC_{50} = 2.4 \ \mu M)$ |
| TRPM8 (agonist effect) (h)                              | $-7.4 \pm 1.4^{\circ}$                   |
| TRPM8 (antagonist effect) (h)                           | 21.2 ± 7.5                               |
| Voltage-gated ion channels                              |                                          |
| Ca <sup>2+</sup> channel L-type, dihydropyridine (r)    | -1.6 ± 20.5                              |
| Ca <sup>2+</sup> channel L-type, diltiazem (r)          | 18.4 ± 13.0                              |
| Ca <sup>2+</sup> channel L-type, verapamil ( <i>r</i> ) | 31.9 ± 3.0                               |
| Ca <sup>2+</sup> channels, N-type (r)                   | 4.4 ± 8.1                                |
| $K^+$ channel $[K_v]$ ( <i>r</i> )                      | -15.9 ± 3.8                              |
| hERG ( <i>h</i> )                                       | $82.3 \pm 4.0^{d}$                       |
| Na⁺ channels, site 2 ( <i>r)</i>                        | 52.1 ± 4.2                               |
| Ligand-gated ion channels                               |                                          |
| 5-HT <sub>3</sub> ( <i>h</i> )                          | -1.3 ± 5.9                               |
| GABA, central benzodiazepine (r) <sup>b</sup>           | -10.7 ± 8.7                              |
| Glutamate, NMDA (r)                                     | 8.2 ± 1.5                                |
| Store-operated Ca <sup>2+</sup> channels                | $-10.1 \pm 6.0$                          |



Optimization of TRPV6 Calcium Channel Inhibitors Using a 3D Ligand-Based Virtual Screening Method. C Simonin, M Awale et al., *Angew. Chem., Int. Ed. Engl.* **2015**, *54*, 14748-14752.



Discovery of a Selective Aurora A Kinase Inhibitor by Virtual Screening. Falco Kilchmann et al., *J. Med. Chem.*, **2016**, 26 doi:10.1021/acs.jmedchem.6b00709



Aurora A binding to TPX2









HQ

ó

#### METHODOLOGY



**Open Access** 

# The polypharmacology browser: a web-based multi-fingerprint target prediction tool using ChEMBL bioactivity data

Mahendra Awale and Jean-Louis Reymond\*



### **New Molecules**

- 1. GDB-17 and FDB-17
- 2. Visualization
- 3. Virtual Screening
- 4. Extension to larger molecules



#### www.cheminfo.org/pdbexplorer



Jin X, Awale M, Zasso M, Kostro D, Patiny L, Reymond JL: PDB-Explorer: a web-based interactive map of the protein data 30 bank in shape space. BMC Bioinformatics **2015**, *16*, 339.



Fonds national suisse Schweizerischer Nationalfonds Fondo nazionale svizzero Swiss National Science Foundation

#### gdb.unibe.ch

D UNIVERSITÄT BERN

Excellence in Membrane Transport Research



High Quality Screening for Drug Discovery