

Molecular Structure Representation in Chemoinformatics Applications

Christof H. Schwab

Molecular Networks GmbH Neumeyerstr. 28 90411 Nürnberg, Germany

mn-am.com

Altamira LLC 1455 Candlewood Drive Columbus, Ohio 43235, USA

Molecular Networks and Altamira MN-AM

Erlangen, Germany Friedrich-Alexander-Universität 1997

Columbus, Ohio, USA The Ohio State University 2008

- Chemoinformatics
 - > 3D structure generation
 - > Physicochemical and reaction properties
 - > Metabolic reaction knowledge
 - Computational toxicology and risk assessment
 - Database and knowledgebase
 - Predictive models
 - Consulting services

Outline

- Representation of chemistry
- Chemoinformatics platform(s)
 - Some basic concepts
- Aspects of model building
- Examples
 - Computational toxicology

Representation of Chemical Structures – General

Atoms

- Atom type (element)
- Charge, radical
- Stereochemistry

Bonds

- Bond type
- Stereochemistry

Electron systems

- $\succ \sigma$ -, π -systems
- Conjugated, aromatic

Representation of Chemical Structures – File Formats

Linear ("0D") representation
 SMILES, InChI, SLN

C1 (0) =C (0) C (=0) 0 [C@@H]1 ([C@@H] (0) (C0)

InChI=1S/C6H8O6/c7-1-2(8)5-3(9)4(10) 6(11)12-5/h2,5,7-10H,1H2/t2-,5+/m0/s1

2D/3D representation
 Molfile, SD V2000/V3000

- 3D representation
 - > SYBYL MOL/MOL2, MacroModel, Maestro, PDB (Cartesian coordinates)
 - > CIF, crystallographic file formats (internal coordinates)

Representation of Chemical Reactions – File Formats

Linear ("0D") transformations
 SMARTS, SMIRKS,...

CC (=0) CC>>CC (0) =CC

2D/3D representations
 RD V2000/V3000

\$RXN
Molecular Editor
2 1
\$MOL
[0:2]=[CH:1]Cl.[H:5][NH:3][CH3:4]>>[H:5][N:3]([CH3:4])[CH:1]=[0:2]
JME 2016-11-13 Tue Oct 24 09:02:00 GMT+200 2017
3 2 0 0 0 0 0 0 0999 72000
0.0000 0.6984 0.0000 C 0 0 0 0 0 0 0 0 1 0 0
0.0000 2.0951 0.0000 0 0 0 0 0 0 0 0 0 0 2 0 0
1.2172 0.0000 0.0000 Cl 0 0 0 0 0 0 0 0 0 0 0 0
1 2 2 0 0 0 0
1 3 1 0 0 0 0
M END
ŞMOL
[0:2]=[CH:1]Cl.[H:5][NH:3][CH3:4]>>[H:5][N:3]([CH3:4])[CH:1]=[0:2]
JME 2016-11-13 Tue Oct 24 09:02:00 GMT+200 2017
3 2 0 0 0 0 0 0 0999 V2000
0.7005 1.2109 0.0000 N 0 0 0 0 0 0 0 0 3 0 0
2.1016 1.2109 0.0000 C 0 0 0 0 0 0 0 0 4 0 0

Chemoinformatics Platform – What Is It and What Does It Do?

- Chemistry-aware software tool
- Handling, processing and manipulating chemical information
 - Chemical structures, reactions and data
 - Descriptor calculation
 - Reaction generation
 - Data mining and analysis
 - Database management
- Visualization
- Interface to the scripting language
 - Regular tasks and applications

en.wikipedia.org/wiki/Cheminformatics_toolkits

Chemoinformatics Platform – Requirements

General

Chemistry awareness for handling a broad range of chemistry and chemical features

Robust

Processing of large data sets ("big chemistry/data")

Reliable

Deterministic and consistent results

General – "Big Chemistry"

- Chemistry awareness for handling a broad range of chemistry and chemical features
 - > Different compound classes
 - Different areas of application
 - Handling of 2D and 3D structures
 - > Handling of reactions and transformations (e.g., tautomerization)
 - Property calculation (e.g., descriptors)
 - Storage and retrieval of compounds and reactions
 - Datamining capabilities
 - > Parametrize for entire periodic table
 - No restrictions of number of atoms or size of molecules

Reliability – Consistent Results

- Atom-numbering dependent algorithms
- Unique atom numbering
 - > Canonicalization

BigChem Autumn School 2017, Modena, Italy

Reliability – Different Input Formats

Representation by different file formats

Reliablity – Handling of Stereochemistry

- Example of stereochemistry coded in SD V3000 format
 - Total of 7 stereocenters

Processing options	Number of generated isomers
No restrictions	128 (=27)
Preserve all defined isomers	1
Use V3000 stereochemical extension	16 (=24)

Robustness – Processing of Large Datasets

- What is big data in chemistry?
- The Cambridge Crystallographic Database (CSD)
 Over 875,000 experimentally-determined crystal structures
- PubChem
 - > Over 90 Million characterized chemical compounds
- Chemical Abstract Service, CAS Registry
 - > Over 130 Million unique organic and inorganic chemical substances
- GDB, University of Berne
 - GDB-13, 1 Billion compounds (13 atoms, C, O, N, S, and Cl)
 - GDB-17, 164 Billion compounds (17 atoms, C, O, N, S, and halogens)

Robustness – Processing of Large Datasets

3D structure generation with CORINA Classic

	PubChem	GDB13
Total number of compounds	90,624,841	971,468,301
Total number of converted compounds	90,246,183	961,454,732
Total number of <i>not</i> converted compounds	378,658	10,013,569
Conversion rate [%]	99.6	99.0
Computation time [hours]	21	112
Conversion rate [structures per day]	104,000,000	208,000,000

www.mn-am.com/online_demos/corina_demo www.mn-am.com/online_demos/corina_demo_interactive

Modeling Approach

Combination of evidence

Dataset Preparation – Structure Curation

- Charges and radicals
- Hypervalency
- Bond orders
- Stereochemistry
- Penta-valent nitro

- Check with multiple sources
 - CAS, PubChem, ChemID Plus, ChemSpider, Wikipedia,...
- Automatic algorithms, but often manual intervention needed

Dataset Preparation – Structure Clean-Up and Standardization

Select	Select	Setup	Remove	Remove	Neutralize	Remove	Setup	Save	\rangle
Input	Dataset	Clean Steps	Empty	Fragments	Charged	Duplicates	3D	Results	

CORINA Symphony

- Removal of counter ions and small fragments
- > Neutralizing formal charges
- Addition of hydrogen atoms
- Generate 3D coordinates
- Placement in preferred 3D orientation
- Detection and removal of duplicates

Chemotypes

- Structural fragments with embedded physicochemical properties [1]
 - > Atoms, bonds, electron systems and whole molecule
- Support by cheminformatics library MOSES
 - > XML-based language to encode chemotypes

Atom in fragment in certain property range, *e.g.*, partial charge ≤ 0

Molecule that exhibits this fragment in certain property range, *e.g.*, logP > 4

Application of Chemotypes

- Profiling of datasets, inventories, databases
- Endpoint-specific structural alerts
 - > Toxicity
 - > *Reactive toxicity*
 - Metabolism
- Risk/safety assessment tool
 - > Building categories
 - > Read-across
 - > TTC categories
 - > Predictive (QSAR) models

ChemoTyper Application

GUI application

- Visual inspection of datasets according to matching rules
- Subset generation
- Grouping of chemicals
- Fingerprinting
- Contains ToxPrint chemotypes
 - > 729 public chemotypes
 - Focus on applications in computational toxicity

chemotyper.org

Descriptors – CORINA Symphony

- 2D whole molecule properties
- 3D descriptors
 - Dipole moment,...
 - Shape and size descriptors
- Quantum mechanical parameters (mechanistic)
 HOMO/LUMO energies

 $\succ \Delta H_f$

www.mn-am.com/services/corinasymphonydescriptors

BigChem Autumn School 2017, Modena, Italy

MOSES/CORINA Chemoinformatics Platform at MN-AM

Case Study I

- Analyze chemical reactivity of conformations of 2-amino-1,5-benzene-di-ethanol
- Predict skin sensitization potential of conformations

2-Amino-1,5-benzene-di-ethanol

Case Study I – Workflow

Analyze chemical reactivity of conformers of 2-amino-1,5-benzene-diethanol and predict their skin sensitization potential

Skin Sensitization – Biology

Event determining steps in phases of skin sensitization
 > OECD report ENV/JM/MONO(2012)10/PART1

Chemical Reactions in Skin Sensitization – Hapten-Protein

- Schiff base formers
 Aldehyde binding to lysine
- Michael acceptors

 α, β-unsaturated carbonyl

binding to cystein

NO₂

Н

MWW

NH₂

Aromatic nucleophilic substitution

NO₂

Nu:

Н

NO₂

NO:

+ X⁻

Х-

Protein

RHN

Chemical Reactions in Skin Sensitization – Hapten-Protein

Pro-electrophiles

Alkyl amino amines

Pro-Michael acceptors
 Oxidation

Phenol (dihydroxy) \rightarrow quinone \rightarrow Aromatic amines (diamino) \rightarrow di-imine \rightarrow

Metabolic activation
 Oxidation

E.g., phenols (eugenol)

Literature [2], [3]

Skin Sensitization – Modeling

Dataset

- Local lymph node assay
 - Hazard model: 602 unique structures, 390 sensitizers / 212 non-sensitizers
 - Potency model: 390 sensitizers, 282 GHS 1B / 108 GHS 1A

Descriptors

- CORINA Symphony descriptors
 - Global molecular, size and shape descriptors
- > Semi-empirical quantum mechanical descriptors calculated by EMPIRE
 - ΔH_{f} , HOMO, LUMO, HOMO/LUMO gap
- Toxprint chemotypes

Skin Sensitization – Modeling

Structural alerts

- > Chemotype with positive correlation to endpoint
- Trained for respective endpoint
- > Odds ratio as quantitative severity score

Mechanistically grouping according to mode of action (MoA)

- Global and local models
 - Alcohols
 - Aldehyde and ketones
 - Amines
 - Michael acceptors
 - Phenols and quinones

Skin Sensitization – Modeling

Modeling technique

- > Bivariate analysis for descriptor selection
- Hybrid method of partial least squares (PLS) and ordinal logistic regression
 - Composite set of orthogonal latent variables
- Weight of evidence approach
 - > Dempster-Shafer theory (decision theory)
 - Probabilistic approach providing quantitative estimation of uncertainties of predictions
 - > Overall outcome combines QSAR models and structural alerts

POS Prob = [0.267, 0.392]

ToxGPS Skin Sensitization Model

Hazard and potency model

H2N

Skin Sensitization – (LLNA) Hazard Prediction

BigChem Autumn School 2017, Modena, Italy

ToxGPS Skin Sensitization Model

External validation of skin sensitization hazard model (138 compounds)

Statistical parameter	QSAR models	QSAR models and structural alerts
Sensitivity (skin sensitizers)	87%	88%
Specificity (non-sensitizers)	82%	82%
Equivocal predictions	5%	5%

External validation of skin sensitization potency model (99 compounds)

Statistical parameter	QSAR models	QSAR models and structural alerts
Sensitivity (GHS 1A)	83%	85%
Specificity (GHS 1B)	83%	81%
Equivocal predictions	12%	10%

Case Study I – Workflow

Analyze chemical reactivity of conformers of 2-amino-1,5-benzene-diethanol and predict their skin sensitization potential

ToxGPS Skin Sensitization Model

Local amines model for skin sensitization hazard QSAR model

Distribution of selected molecular descriptors across conformers predicted as negative, equivocal, and positive

Case Study II

Analyze conformers of linoleic acid and predict predominant isoform of human P450

isoCYP Model

Prediction of the predominant human P450 isoform
 > 3A4, 2D6, 2C9

- Classifier based on decision tree (isoCYP)
 - Dataset of about 380 compounds with known predominant isoform
 - Five 2D- and 3D-based descriptors

Drug metabolism

Case Study II – Workflow

Analyze conformers of linoleic acid and predict predominant isoforms of human P450

Case Study II

Linoleic acid
 14 rotatable bonds

- ROTATE Classic parameters
 - Process all rotatable bonds
 - > Use the 2 most preferred torsion angle values for each rotatable bond
 - Keep only conformers having at least an RMS deviation of 15 degree in torsion angle space to each other
 - > Save conformers with ROTATE energy score of up to 30

127 conformations

Case Study II

- Different conformation predicted for different predominant isoforms
 - Different mechanisms reported in literature

ROTATE energy score: 1.7 AM1 HoF: -524.4 kJ/mol

ROTATE energy score: 5.3 AM1 HoF: -503.4 kJ/mol

CYP 3A4

Conversion to bisallylic hydroxy fatty acid [4,5]

ROTATE energy score: 27.9 AM1 HoF: -470.7 kJ/mol

ROTATE energy score: 29.4 AM1 HoF: -459.9 kJ/mol

CYP 2C9

Linoleate epoxygenase in human liver microsomes [5,6]

12,13-epoxy-9-octadecenoate

9,10-epoxy-12-octadecenoate

BigChem Autumn School 2017, Modena, Italy

Summary

- Basic concepts of cheminformatics platforms
 - General, robust and reliable
 - MOSES/CORINA at MN-AM
- Different steps in model building
 - > Data
 - Mechanistic knowledge
 - Descriptor selection
 - Uncertainties in predictions
- Influence of 3D structure/conformation

Acknowledgements

BigChem project

Nadja Saendig, Guilio Rastelli

> Barbara Gasset, Igor Tetko

My colleagues at MN-AM

Aleksandra Mostrag-Szlichtyng, Chihae Yang, Jie Liu, Vessela Vitcheva, Aleksey Tarkhov, Bruno Bienfait, James F. Rathman, Jörg Marucszyk, Jongjin Park, Michael Mulcahy, Oliver Sacher, Thomas Kleinöder, Tomasz Magdziarz

Thank you for your attention!

Literature

- [1] Yang C *et al.* 2015. J. Chem. Inf. Model. 55(3): 510-528DOI: 10.1021/ci500667v
- [2] Smith Pease, C.K. 2003. Toxicology, 192: 1-22
- [3] Aptula, et al. 2006. Chem. Res. Toxicol. 19: 1097
- [4] Bylund J et al. 1998. Analytical Biochemistry 265: 55-68
- [5] Bylund J *et al.* 1998. Journal of Pharmacology and Experimental Therapeutics 284(1): 51-60
- [6] Draper AJ, Hammock BD. 2000. Archives of Biochemistry and Biophysics 376(1): 199-205

