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Data Mining in Chemoinformatics 

 Goal: construct models that enable the 

identification of relationships between chemical 

structure and activity 

 

 Traditional QSAR techniques (multiple linear 

regression) are not generally applicable 

- data sets (e.g. HTS sets) are usually too large 

- data sets are usually structurally diverse 

 

 Machine learning techniques are required 
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Types of Machine Learning Algorithms 

 annotated training sets 

given 

 (input/output pairs: x / f(x)) 

 deduce function f from 

training data 

 produce the correct output 

f(x) for an input x 

 only unlabeled training 
examples are given 

 determine how data are 
organized / find patterns in 
the data 



Classification 

 Prediction of a class based on classified examples 

Training set 

Structural 

pattern 

Machine 
Learning 

Supervised 

Classification 

Regression 

Unsupervised 

Clustering 

Associative 
Learning 



Regression 

 Prediction of a numerical property based on examples 

with specific values 

Training set 

Structure- 

value 

relations 
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Clustering 

 Organize data into groups of similar objects 
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Machine learning steps 

 Data 

 Representation / Distance metric 

 Objective function  

 Machine learning method 

 Performance evaluation 

 Model selection: parameter optimization 



Data and representation 

 Select data for training 

 Data representation 

- vector of features 

 features can be categorical or numerical 

- something else (computer-readable representation) 

 Distance metric for representation 

- assess similarity between objects 



Objective function 

 Mathematical formulation of what to learn, e.g. 

- classification: minimize the number of misclassifications   

- regression: minimize the difference between correct and predicted 

quantity 

- clustering: minimize the distance within clusters while maximizing 

the distance between clusters 

 

 ML method suited for minimizing the chosen objective 

function, e.g. 

- SVM for minimizing classification errors 

- linear regression for minimizing the „sum of squared errors“ 

- hierarchical clustering… 

 



Optimization method 

 ML methods perform a tradeoff between 

- variance: sensitivity to training data 

 high variance -> overfitting 

- bias: error in (simplified) model assumptions 

 model performs as well on test as training data 

 high bias -> underfitting 

 Regularization parameters 

- some methods have hyperparameters controlling the complexity 

of a model 

- the higher the complexity the better the performance on the 

training data 

- simpler models might not perform so well on training data, but 

might perform comparable on test data  

 



Classification: Naive Bayes 

 Models feature distributions for different classes 

 Assumes that features are distributed differently  

 Distributions are modeled based on training data 

- normal distributions 

 

 

- Bernoulli distributions 

 

 

 Independence of features is assumed 
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Classification: Naive Bayes 

 Naive Bayesian classification are easy to use 

 

 Naive Bayes makes strong assumptions 

- continuous features are normally distributed 

- feature distributions are conditionally independent 

 

 These assumptions can introduce a strong bias 

into the model 



Classification: Decision Tree 

 Simple example  

- classification of oxygen-containing compounds 

 

compound 
to be 

classified 

4 categories 

Is there a 

hydrogen atom 

connected to 

the oxygen? 

Is there a 

carbonyl 

group next to 

the oxygen? 

Is there a 

carbonyl group 

next to the 

oxygen? 

yes 

no 

yes 

no 

yes 

no 

acid 

alcohol 

ester 

ether 



Classification: Decision Tree 

 Given a query object (a molecule, e.g.) 

- traverse the tree and test the attribute values of the object  

- assign the class label of the respective leaf to the object 

CH2COOH 

class label 

Is there a 

hydrogen atom 

connected to 

the oxygen? 

Is there a 

carbonyl 

group next to 

the oxygen? 

Is there a 

carbonyl group 

next to the 

oxygen? 

yes 

no 

yes 

no 

yes 

no 

acid 

alcohol 

ester 

ether 



Classification: Decision Trees 

 Decision trees are easy to use 

- different types os features: numerical categorical 

- no explicit metric required 

- „white box“: Relevant features are observable 

- prone to overfitting (high variance) 

 

 Hyperparameters have to be set 

- depth of tree 

- number of features to consider 

 



Classification: Random Forest 

 A machine learning 

ensemble classifier 

- consisting of many 

decision trees 

- trees build from 

subsamples of training 

data 

- tree decisions based on 

subset of features 

 Ensemble models increase bias for 

individual models while decreasing 

the variance of the overall model 



Classification: Random Forest 

 A machine learning 

ensemble classifier 

- combining output class 

labels of the individual 

trees to one final output 

class label 

- consensus prediction  

(class predicted by the 

majority of trees) 

 Ensemble models increase bias for 

individual models while decreasing 

the variance of the overall model 



Classification: Support Vector Machines 

(SVM) 
 Supervised binary classification 

approach 

Idea: 

 Derivation of a separating 

hyperplane  

 Projection of test compounds for 

– classification 

– ranking 

 Slack variables allow for 

misclassification of some data 

during modeling 

 

w 

x1 

x2 

active 

inactive 



Classification: SVM 

Feature Space Transformation 

 A reasonable linear separation of data is not always 

possible (even if limited classification errors are allowed) 

 Projection of data into higher dimensional feature space 

often permits a linear separation 



Classification: SVM 

Popular Kernel Functions 

 Linear kernel (standard scalar product):  

 

 Gaussian radial basis function: 

 

 Polynomial kernel: 

 

 Tanimoto kernel:  
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Classification: SVM 

 SVMs have hyperparameters that influence the 

complexity of a model: 

- Coefficient controlling the sensitivity to errors 

- Some kernels like Gaussian or polynomial kernel are 

parameterized 

 

 



Performance measures 

Confusion matrix Predicted class: 
Negative 

Predicted class: 
positive 

True class: 
Negative 

True negatives 
(TN) 

False positives 
(FP) 

True class: 
Positive 

False negatives 
(FN) 

True positives 
(TP) 

 Sensitivity (true positive rate) 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 Specificity (true negative rate) 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

 Precision (positive predictive value): 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 Accuracy: 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝐹𝑁
 

 Balanced accuracy: 𝐴𝑐𝑐𝐵 = 0.5
𝑇𝑃

𝑇𝑃+𝐹𝑁
+ 

𝑇𝑁

𝑇𝑁+𝐹𝑃
= 0.5 𝑇𝑃𝑅 + 𝑇𝑁𝑅  

 F1-score: 𝐹1 = 2
𝑃𝑃𝑉⋅𝑇𝑃𝑅

𝑃𝑃𝑉+𝑇𝑃𝑅
 (harmonic mean of PPV and TPR) 

 Matthews correlation coefficient: 𝑀𝐶𝐶 =
𝑇𝑃⋅𝑇𝑁−𝐹𝑃⋅𝐹𝑁

(𝑇𝑁+𝐹𝑃)(𝐹𝑁+𝑇𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑃+𝑇𝑃)
 

 

 

 

 



Receiver operating characteristic 

(ROC) 
 Some ML methods (can) yield 

scores or probabilities of a class 

 

 A variable threshold is used for 

categorization 

 

 ROC: 
- Vary threshold 

- Plot FPR (x) vs. TPR (y) 

 

 A curve above diagonal 

indicates positive performance 

 

 Random classification 

corresponds to diagonal  

TPR 

FPR 



Model evaluation 

 How can we tell whether a model is good? 

- a number of metrics exist for measuring the 

performance of models 

 classification: (balanced) accuracy, precision, recall, ROC, 

correlation coefficient,… 

 regression: mean squared/absolute error 

 clustering: silhouette coefficient,… 

 A model might be good on the training data, will it 

be good on test data? 

 



Model evaluation 

 Cross validation: 

- select specific model and parameter settings 

- split training data into n parts, repeatedly 

 retain 1 part, train on n-1 parts 

 measure performance on the 1 part, which was not part of the training 

- assign the average performance 

 

 Cross validation properties: 

- works on the internal training set 

- performance is evaluated on data not used for training 

- checks the generalization ability of the model 

 

 



Parameter optimization / Model 

selection 
 Cross validation can be directly used to compare different 

ML methods 

 

 Many ML methods possess hyperparameters 

- control the complexity of a model 

- cross validation can and should be used to tune these parameters 

 

 Few hyperparameters can be tested using grid search 
- systematically explore possible parameter values 

- determine performance with cross validation 

- choose best settings for final model 

 Other strategies exist 

- random search, gradient-based optimization, … 

 
 

 

 Cross validation: 

- select specific model an parameter settings 

- split training data into n parts, repeatedly 

 retain 1 part, train on n-1 parts 

 measure performance on the 1 part, which was not part of the training 

- assign the average performance to the specific settings 

- vary model and settings 

- choose model/parameter setting which had highest performance. 



ML for Virtual Screening: 

Data, Representations and 

Metrics 



Machine Learning in Chemoinformatics 

Similarity may refer to 

 structure 

 shape 

 physicochemical properties 

 pharmacophoric features 

 ... 

 

 

Central theme 

Investigation of the relationships between similarity and 

properties of molecules 
 

Properties may refer to 

 biological activity 

 target selectivity 

 oral availability 

 toxicity 

 ... 

 



Machine Learning in Chemoinformatics 

General rule 

Similarity property principle 

Similar structures show 

similar activities 

Central theme 

Investigation of the relationships between similarity and 

properties of molecules 
 

9.37 pKi 9.08 



Data: Public Sources 

 ChEMBL 

- only activity annotations 

- analog series bias 

- for specific target: not representative sample of active 

chemical compounds 

 

 PubChem 

- HTS assay data less biased 

- less confident 

 



Data: Normalization 

 Molecular representations can vary 

- protonation states 

- salts 

 Consistent representation required 

- washing: 

 remove counter ions 

 consistent protonation states 
- nitrogen, oxygen, sulfur 

 hydrogen suppressed representation 

 Activity annotations might not be comparable 

- prefer pKi over IC50 

 IC50 depends on assay conditions like enzyme and substrate 

concentrations 

 



Representation & Distance Metric 

 Fingerprints 

 Descriptors 

 3-D conformations 

 Graph structures 

 

 Representation limits what can be perceived 

- only information encoded in the representation is 

available 

 Distance metric depends on the representation 



Representation: Descriptors 

 Numerical property descriptors 

- physicochemical descriptors 

 logP(O/W) 

 molecular weight, … 

- topological descriptors 

 connectivity indices 

 shape descriptors,… 

- count descriptors 

 # of nitrogen atoms 

 # of rings,…  

 numerical vector: (𝑥1, 𝑥2, … , 𝑥𝑛) 



Distance metric: Descriptors 

 Euclidean distance 

- 𝑑 𝑥, 𝑦 =  (𝑥𝑖 − 𝑦𝑖)
2 

 

 Important: Normalization 

- normalized Euclidean distance 

- standard deviations of sample data: 𝑠𝑖 

- 𝑑 𝑥, 𝑦 =
 (𝑥𝑖−𝑦𝑖)

2

𝑠𝑖
2  

 Kernel functions: 

- radial basis function (RBF): 𝜙 𝑟 = 𝑒−𝛾 𝑥−𝑦 2
 

 

 



Representation: Fingerprints 

=> binary vector (0,0,1,1,0,1,0,1) or feature set {2,3,5,7} 



Distance Metric: Fingerprints 

 Hamming/Manhattan distance 
- number of differing features 

- 𝑇𝑐 𝐴, 𝐵 = 𝐴 △ 𝐵 =  𝑎𝑖 − 𝑏𝑖 = 𝑎 − 𝑏 2 

 

 Tanimoto coefficient 
- ratio of the number of features two molecules have in common to the number of all 

occuring features 

- 𝑇𝑐 𝐴, 𝐵 =
𝐴∩𝐵

𝐴∪𝐵
=

 𝑎𝑖𝑏𝑖
 𝑎𝑖+ 𝑏𝑖− 𝑎𝑖𝑏𝑖

 

 

 Kernel function (RBF) 

- 𝑟 = 𝑎 − 𝑏  

- Gaussian: 𝜙 𝑟 = 𝑒−𝛾𝑟
2
 

 



Representation: Conformations 

 Volumetric shapes 

 

 

 

 Metric: 

- Shape superposition 

- ROCS 



Representation: Graph structures 

 2D Graph representations 

 

 

 

 

 Metrics: 

- Maximum common substructure (MCS): 

 ratio of number of bonds in MCS to total number of bonds 

- Graph kernels: 

 random walk kernel 



SVM in Compound Space 

 Compounds as data 

points 

 

 Negative class: 

inactive compounds 

 

 Positive class:    

active compounds 

 

 Compound reference 

space described by 

FP features 

 

x1 

x2 
negative class  

positive 

class  



SVM in Target-Ligand Space 

 Data points are target-

ligand pairs 

 

 Positive class:    

active compounds 

with true targets 

 

 Negative class: 

inactive compounds 

with pseudo targets 

x1 

x2 



Target-Ligand Kernel (TLK) 

target

space

Kligand(l1,l2) = 1Ktarget(T1,T2) = 0.26

Ktarget-ligand((T1,l1)(T2,l2)) = Ktarget(T1,T2)  Kligand(l1,l2)) = 0.26  1

SSGADYPDELQCLDAPVLSQAKC

NVGKGQPSVLQVVNLPIVERPVC

ligand

space

target

space

Kligand(l1,l2) = 1Ktarget(T1,T2) = 0.26

Ktarget-ligand((T1,l1)(T2,l2)) = Ktarget(T1,T2)  Kligand(l1,l2)) = 0.26  1

SSGADYPDELQCLDAPVLSQAKC

NVGKGQPSVLQVVNLPIVERPVC

ligand

space


