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Data Mining iIn Chemoinformatics

= Goal: construct models that enable the
identification of relationships between chemical
structure and activity

= Traditional QSAR techniques (multiple linear
regression) are not generally applicable
- data sets (e.g. HTS sets) are usually too large
- data sets are usually structurally diverse

= Machine learning techniques are required
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Types of Machine Learning Algorithms

® annotated training sets = only unlabeled training
given examples are given
(input/output pairs: x / f(x)) ®  determine how data are

» deduce function f from organized / find patterns in
training data the data

= produce the correct output
f(x) for an input x
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Classification

= Prediction of a class based on classified examples

Training set - -

Structural .
pattern ” A
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Regression

= Prediction of a numerical property based on examples
with specific values

Training set - -

Structure-
value 1%
relations ' 0.4

v

LS il LIMES v

Isncfiuernrr?:t ics Life & Medical Sciences Institute UNIVERSITAT




Clustering

= Organize data into groups of similar objects

Training set ‘

?

Structural

pattern
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Machine learning steps

= Data

= Representation / Distance metric

= Objective function

= Machine learning method

= Performance evaluation

= Model selection: parameter optimization
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Data and representation

= Select data for training

= Data representation

- vector of features
= features can be categorical or numerical

- something else (computer-readable representation)

= Distance metric for representation
- assess similarity between objects
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Objective function

= Mathematical formulation of what to learn, e.qg.
- classification: minimize the number of misclassifications

- regression: minimize the difference between correct and predicted
guantity

- clustering: minimize the distance within clusters while maximizing
the distance between clusters

= ML method suited for minimizing the chosen objective
function, e.qg.
- SVM for minimizing classification errors
- linear regression for minimizing the ,sum of squared errors”
- hierarchical clustering...
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Optimization method

= ML methods perform a tradeoff between
- variance: sensitivity to training data
= high variance -> overfitting
- bias: error in (simplified) model assumptions
= model performs as well on test as training data
= high bias -> underfitting
= Regularization parameters

- some methods have hyperparameters controlling the complexity
of a model

- the higher the complexity the better the performance on the
training data

simpler models might not perform so well on training data, but
might perform comparable on test data
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Classification: Naive Bayes

= Models feature distributions for different classes

= Assumes that features are distributed differently

= Distributions are modeled based on training data
- normal distributions

L(AI%) o p(x | A)=—— Zexp[—wj
2o o}

- Bernoulli distributions
L(Alvi :1) o P(Vi :1| A) = P

= |ndependence of features is assumed

L(A[X) o p(x] A)=ﬁ p(x | A)
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Classification: Naive Bayes

= Nailve Bayesian classification are easy to use

= Naive Bayes makes strong assumptions
- continuous features are normally distributed
- feature distributions are conditionally independent

"= These assumptions can introduce a strong bias
iInto the model
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Classification: Decision Tree

= Simple example
- classification of oxygen-containing compounds

yes

Is there a —
yes carbonyl
group next to
s there a the oxygen? 0
hydrogen atom
connected to yes
the oxygen? Is there a
carbonyl group
no next to the
oxygen? no

acid

alcohol

ester

ether
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Classification: Decision Tree

= Given a query object (a molecule, e.g.)
- traverse the tree and test the attribute values of the object

- assign the class label of the respective leaf to the object

yes
Is there a
yes carbonyl
group nextto
Is there a the oxygen? no——
hydrogen atom
connected to yes_
the oxygen? Is there a
carbonyl group
no next to the
oxygen? no

acid

alcohol

ester

ether
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Classification: Decision Trees

= Decision trees are easy to use
- different types os features: numerical categorical
- no explicit metric required
- ,white box": Relevant features are observable
- prone to overfitting (high variance)

= Hyperparameters have to be set
- depth of tree
- humber of features to consider
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Classification: Random Forest

Input
= A machine learning J

ensemble classifier

- consisting of many
decision trees

- trees build from

subsamples of training h':Ej h‘:} . . h':Ej
data

- tree decisions based on Tree 1 Tree 2 Tree N
subset of features

® Ensemble models increase bias for l
iIndividual models while decreasing
the variance of the overall model

Combining output
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Classification: Random Forest
Input
= A machine learning |
ensemble classifier J

- combining output class
labels of the individual

trees to one final output Y v v

class label H:Ej H:Ej ... H:Ej
- consensus prediction

(class predicted by the Tree 1 Tree 2 Tree N
majority of trees)

® Ensemble models increase bias for l
iIndividual models while decreasing
the variance of the overall model

Combining output
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Classification: Support Vector Machines

(SVM)

m  Supervised binary classification
approach X5

ldea:

= Derivation of a separating
hyperplane

= Projection of test compounds for
— classification
— ranking

= Slack variables allow for
misclassification of some data
during modeling i
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Classification: SVM
Feature Space Transformation

= Areasonable linear separation of data is not always
possible (even if limited classification errors are allowed)

= Projection of data into higher dimensional feature space
often permits a linear separation

¢

oo 4

Input Space Feature Space
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Classification: SVM

Popular Kernel Functions

= |inear kernel (standard scalar product):
K Linear (X,x") = <sz'>

= Gaussian radial basis function: )

x=x]

2672

KGaussian (X1X') — exp(— )

= Polynomial kernel:
KPolynomial (Xixl) — (<X1X'> +1)d
= Tanimoto kernel:

)
(X, %)+ (X', x") = (x,Xx')

K

Tanimoto (X’X') =
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Classification: SVM

= SVMs have hyperparameters that influence the
complexity of a model:
- Coefficient controlling the sensitivity to errors

- Some kernels like Gaussian or polynomial kernel are
parameterized
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Performance measures

Confusion matrix | Predicted class: Predicted class:
Negative positive
True class: True negatives False positives
Negative (TN) (FP)
True class: False negatives True positives
Positive (FN) (TP)
®  Sensitivity (true positive rate) TPR = r
TP+FN
®  Specificity (true negative rate) TNR = T;fFP
= Precision (positive predictive value): PPV = r
TP+FP
= Accuracy: Acc = [T
TP+FN+FP+FN
TP TN
= Balanced accuracy: Accg = 0.5( + ) = 0.5(TPR + TNR)
TP+FN  TN+FP
PPV-TPR

= Fl-score: F; =2 (harmonic mean of PPV and TPR)

TP-TN—FP-FN

PPV+TPR

= Matthews correlation coefficient: MCC =

J(TN+FP)(FN+TP)(TN+FN)(TP+TP)
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Recelver operating characteristic
(ROC)

Some ML methods (can) yield
scores or probabilities of a class

= Avariable threshold is used for
categorization

= ROC:

Vary threshold
Plot FPR (x) vs. TPR (y)

100%

= A curve above diagonal

L . TPR
indicates positive performance

= Random classification 0% EPR 100%
corresponds to diagonal
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Model evaluation

= How can we tell whether a model is good?

- a number of metrics exist for measuring the
performance of models

= classification: (balanced) accuracy, precision, recall, ROC,
correlation coefficient,...

= regression: mean squared/absolute error
= clustering: silhouette coefficient,...

= A model might be good on the training data, will it
be good on test data?
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Model evaluation

= Cross validation:
- select specific model and parameter settings

- split training data into n parts, repeatedly
= retain 1 part, train on n-1 parts
= measure performance on the 1 part, which was not part of the training

- assign the average performance

= Cross validation properties:
- works on the internal training set
performance is evaluated on data not used for training
- checks the generalization ability of the model
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Parameter optimization / Model
selection

= Cross validation can be directly used to compare different
ML methods

= Many ML methods possess hyperparameters
- control the complexity of a model
- cross validation can and should be used to tune these parameters

= Few hyperparameters can be tested using grid search

- systematically explore possible parameter values
- determine performance with cross validation
- choose best settings for final model

= QOther strategies exist
- random search, gradient-based optimization, ...
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Machine Learning in Chemoinformatics

Central theme
Investigation of the relationships between similarity and
properties of molecules

Similarity may refer to Properties may refer to
= structure = Dbiological activity
= shape = target selectivity

= physicochemical properties = oral availability
= pharmacophoric features = toxicity
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Machine Learning in Chemoinformatics

Central theme

Investigation of the relationships between similarity and

properties of molecules

General rule
Similarity property principle
Similar structures show

similar activities
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Data: Public Sources

= ChEMBL

- only activity annotations
- analog series bias

- for specific target: not representative sample of active
chemical compounds

® PubChem

- HTS assay data less biased
- less confident
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Data: Normalization

= Molecular representations can vary
- protonation states
- salts

= Consistent representation required
- washing:
® remove counter ions

® consistent protonation states
- nitrogen, oxygen, sulfur

= hydrogen suppressed representation

= Activity annotations might not be comparable

- prefer pK; over IC50

= |C50 depends on assay conditions like enzyme and substrate
concentrations
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Representation & Distance Metric

= Fingerprints

= Descriptors

= 3-D conformations
= Graph structures

= Representation limits what can be perceived

- only information encoded in the representation is
available

= Distance metric depends on the representation
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Representation: Descriptors

= Numerical property descriptors

- physicochemical descriptors
= [ogP(O/W)
= molecular weight, ...

- topological descriptors

= connectivity indices
= shape descriptors,...

- count descriptors
= # of nitrogen atoms
= # of rings,...

= numerical vector: (x4, x5, ..., Xy,)
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Distance metric: Descriptors

® Euclidean distance
- d(x,y) = X (x; — )2

= Important: Normalization
- normalized Euclidean distance
- standard deviations of sample data: s;
.72
_ d(x,y) :\/Z(xlzyl)

Si

m Kernel functions:
- radial basis function (RBF): ¢(r) = e VIx=¥I°
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Representation: Fingerprints

Substructure FP

TODEE

Atom environment FP

~

Dl
C\E:IC\ﬁ/
/C N/C

N//
1. Layer: c *
2. Layer: c(c)(c)C
3. Layer: ¢(en)(e(N)n)C(=0)N

M

-20397436 1724213238 946822330

Pharmacophore FP

m Q 7_AA @
11 ; 3
" “ dRESS
® s o) H @r%

=> binary vector (0,0,1,1,0,1,0,1) or feature set {2,3,5,7}
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Distance Metric: Fingerprints

= Hamming/Manhattan distance

- number of differing features
- Tc(A,B) =|AAaB|=Xla;—b;| = lla—bll?

= Tanimoto coefficient

- ratio of the number of features two molecules have in common to the number of all
occuring features

) __lanB| _ 2 aib;

= Kernel function (RBF)
- r=|la—bll
- Gaussian: ¢(r) = e’
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Representation: Conformations

= VVolumetric shapes

= Metric:
- Shape superposition
- ROCS
i ullILIMES v

Pnfermaties . [ife & Medical Sciences Institute UNIVERSITAT



Representation: Graph structures

= 2D Graph representations

H
N
CI OH

cl —N

A

= Metrics:
- Maximum common substructure (MCS):
® ratio of number of bonds in MCS to total number of bonds

- Graph kernels:
= random walk kernel
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SVM in Compound Space

=  Compounds as data A

points X2 PS o )

negative class

= Negative class:
inactive compounds

= Positive class:
active compounds

=  Compound reference
space described by
FP features

N O
AL
" = | positive

class
Xy
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SVM In Target-Ligand Space

= Data points are target- y A
ligand pairs 2

= Positive class:
active compounds
with true targets

= Negative class:
inactive compounds
with pseudo targets
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Target-Ligand Kernel (TLK]}

sscl;ADyzl>DEIrQ|CLDA£|>VLSQAK(|: L HE EEEE BN
NVGKGQPSVLQVVNLPIVERPVC @\”/@ D:l-:.:l:.:'
Ktarget(Tl’TZ) =0.26 F‘T\_\ Kligand(llilz) =1

/

Ktarget-ligand((Tl'll)(TZ’IZ)) = Ktarget(Tl,Tz) X Kligand(ll'lz). =026 x1
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