
Martin Vogt 

B-IT Life Science Informatics 

Rheinische Friedrich-Wilhelms-Universität Bonn 

 

BigChem Winter School 2017 

25. October 

Machine Learning Concepts in 

Chemoinformatics 



Data Mining in Chemoinformatics 

 Goal: construct models that enable the 

identification of relationships between chemical 

structure and activity 

 

 Traditional QSAR techniques (multiple linear 

regression) are not generally applicable 

- data sets (e.g. HTS sets) are usually too large 

- data sets are usually structurally diverse 

 

 Machine learning techniques are required 



Machine 
Learning 

Supervised 

Classification 

Regression 

Unsupervised 

Clustering 

Associative 
Learning 

Types of Machine Learning Algorithms 

 annotated training sets 

given 

 (input/output pairs: x / f(x)) 

 deduce function f from 

training data 

 produce the correct output 

f(x) for an input x 

 only unlabeled training 
examples are given 

 determine how data are 
organized / find patterns in 
the data 



Classification 

 Prediction of a class based on classified examples 

Training set 

Structural 

pattern 
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Regression 

 Prediction of a numerical property based on examples 

with specific values 

Training set 

Structure- 

value 

relations 
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Clustering 

 Organize data into groups of similar objects 

Training set 

Structural 

pattern 
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Machine learning steps 

 Data 

 Representation / Distance metric 

 Objective function  

 Machine learning method 

 Performance evaluation 

 Model selection: parameter optimization 



Data and representation 

 Select data for training 

 Data representation 

- vector of features 

 features can be categorical or numerical 

- something else (computer-readable representation) 

 Distance metric for representation 

- assess similarity between objects 



Objective function 

 Mathematical formulation of what to learn, e.g. 

- classification: minimize the number of misclassifications   

- regression: minimize the difference between correct and predicted 

quantity 

- clustering: minimize the distance within clusters while maximizing 

the distance between clusters 

 

 ML method suited for minimizing the chosen objective 

function, e.g. 

- SVM for minimizing classification errors 

- linear regression for minimizing the „sum of squared errors“ 

- hierarchical clustering… 

 



Optimization method 

 ML methods perform a tradeoff between 

- variance: sensitivity to training data 

 high variance -> overfitting 

- bias: error in (simplified) model assumptions 

 model performs as well on test as training data 

 high bias -> underfitting 

 Regularization parameters 

- some methods have hyperparameters controlling the complexity 

of a model 

- the higher the complexity the better the performance on the 

training data 

- simpler models might not perform so well on training data, but 

might perform comparable on test data  

 



Classification: Naive Bayes 

 Models feature distributions for different classes 

 Assumes that features are distributed differently  

 Distributions are modeled based on training data 

- normal distributions 

 

 

- Bernoulli distributions 

 

 

 Independence of features is assumed 
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Classification: Naive Bayes 

 Naive Bayesian classification are easy to use 

 

 Naive Bayes makes strong assumptions 

- continuous features are normally distributed 

- feature distributions are conditionally independent 

 

 These assumptions can introduce a strong bias 

into the model 



Classification: Decision Tree 

 Simple example  

- classification of oxygen-containing compounds 

 

compound 
to be 

classified 

4 categories 

Is there a 

hydrogen atom 

connected to 

the oxygen? 

Is there a 

carbonyl 

group next to 

the oxygen? 

Is there a 

carbonyl group 

next to the 

oxygen? 

yes 

no 

yes 

no 

yes 

no 

acid 

alcohol 

ester 

ether 



Classification: Decision Tree 

 Given a query object (a molecule, e.g.) 

- traverse the tree and test the attribute values of the object  

- assign the class label of the respective leaf to the object 

CH2COOH 

class label 

Is there a 

hydrogen atom 

connected to 

the oxygen? 

Is there a 

carbonyl 

group next to 

the oxygen? 

Is there a 

carbonyl group 

next to the 

oxygen? 

yes 

no 

yes 

no 

yes 

no 

acid 

alcohol 

ester 

ether 



Classification: Decision Trees 

 Decision trees are easy to use 

- different types os features: numerical categorical 

- no explicit metric required 

- „white box“: Relevant features are observable 

- prone to overfitting (high variance) 

 

 Hyperparameters have to be set 

- depth of tree 

- number of features to consider 

 



Classification: Random Forest 

 A machine learning 

ensemble classifier 

- consisting of many 

decision trees 

- trees build from 

subsamples of training 

data 

- tree decisions based on 

subset of features 

 Ensemble models increase bias for 

individual models while decreasing 

the variance of the overall model 



Classification: Random Forest 

 A machine learning 

ensemble classifier 

- combining output class 

labels of the individual 

trees to one final output 

class label 

- consensus prediction  

(class predicted by the 

majority of trees) 

 Ensemble models increase bias for 

individual models while decreasing 

the variance of the overall model 



Classification: Support Vector Machines 

(SVM) 
 Supervised binary classification 

approach 

Idea: 

 Derivation of a separating 

hyperplane  

 Projection of test compounds for 

– classification 

– ranking 

 Slack variables allow for 

misclassification of some data 

during modeling 

 

w 

x1 

x2 

active 

inactive 



Classification: SVM 

Feature Space Transformation 

 A reasonable linear separation of data is not always 

possible (even if limited classification errors are allowed) 

 Projection of data into higher dimensional feature space 

often permits a linear separation 



Classification: SVM 

Popular Kernel Functions 

 Linear kernel (standard scalar product):  

 

 Gaussian radial basis function: 

 

 Polynomial kernel: 

 

 Tanimoto kernel:  
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Classification: SVM 

 SVMs have hyperparameters that influence the 

complexity of a model: 

- Coefficient controlling the sensitivity to errors 

- Some kernels like Gaussian or polynomial kernel are 

parameterized 

 

 



Performance measures 

Confusion matrix Predicted class: 
Negative 

Predicted class: 
positive 

True class: 
Negative 

True negatives 
(TN) 

False positives 
(FP) 

True class: 
Positive 

False negatives 
(FN) 

True positives 
(TP) 

 Sensitivity (true positive rate) 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 Specificity (true negative rate) 𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
 

 Precision (positive predictive value): 𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 Accuracy: 𝐴𝑐𝑐 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝐹𝑁
 

 Balanced accuracy: 𝐴𝑐𝑐𝐵 = 0.5
𝑇𝑃

𝑇𝑃+𝐹𝑁
+ 

𝑇𝑁

𝑇𝑁+𝐹𝑃
= 0.5 𝑇𝑃𝑅 + 𝑇𝑁𝑅  

 F1-score: 𝐹1 = 2
𝑃𝑃𝑉⋅𝑇𝑃𝑅

𝑃𝑃𝑉+𝑇𝑃𝑅
 (harmonic mean of PPV and TPR) 

 Matthews correlation coefficient: 𝑀𝐶𝐶 =
𝑇𝑃⋅𝑇𝑁−𝐹𝑃⋅𝐹𝑁

(𝑇𝑁+𝐹𝑃)(𝐹𝑁+𝑇𝑃)(𝑇𝑁+𝐹𝑁)(𝑇𝑃+𝑇𝑃)
 

 

 

 

 



Receiver operating characteristic 

(ROC) 
 Some ML methods (can) yield 

scores or probabilities of a class 

 

 A variable threshold is used for 

categorization 

 

 ROC: 
- Vary threshold 

- Plot FPR (x) vs. TPR (y) 

 

 A curve above diagonal 

indicates positive performance 

 

 Random classification 

corresponds to diagonal  

TPR 

FPR 



Model evaluation 

 How can we tell whether a model is good? 

- a number of metrics exist for measuring the 

performance of models 

 classification: (balanced) accuracy, precision, recall, ROC, 

correlation coefficient,… 

 regression: mean squared/absolute error 

 clustering: silhouette coefficient,… 

 A model might be good on the training data, will it 

be good on test data? 

 



Model evaluation 

 Cross validation: 

- select specific model and parameter settings 

- split training data into n parts, repeatedly 

 retain 1 part, train on n-1 parts 

 measure performance on the 1 part, which was not part of the training 

- assign the average performance 

 

 Cross validation properties: 

- works on the internal training set 

- performance is evaluated on data not used for training 

- checks the generalization ability of the model 

 

 



Parameter optimization / Model 

selection 
 Cross validation can be directly used to compare different 

ML methods 

 

 Many ML methods possess hyperparameters 

- control the complexity of a model 

- cross validation can and should be used to tune these parameters 

 

 Few hyperparameters can be tested using grid search 
- systematically explore possible parameter values 

- determine performance with cross validation 

- choose best settings for final model 

 Other strategies exist 

- random search, gradient-based optimization, … 

 
 

 

 Cross validation: 

- select specific model an parameter settings 

- split training data into n parts, repeatedly 

 retain 1 part, train on n-1 parts 

 measure performance on the 1 part, which was not part of the training 

- assign the average performance to the specific settings 

- vary model and settings 

- choose model/parameter setting which had highest performance. 



ML for Virtual Screening: 

Data, Representations and 

Metrics 



Machine Learning in Chemoinformatics 

Similarity may refer to 

 structure 

 shape 

 physicochemical properties 

 pharmacophoric features 

 ... 

 

 

Central theme 

Investigation of the relationships between similarity and 

properties of molecules 
 

Properties may refer to 

 biological activity 

 target selectivity 

 oral availability 

 toxicity 

 ... 

 



Machine Learning in Chemoinformatics 

General rule 

Similarity property principle 

Similar structures show 

similar activities 

Central theme 

Investigation of the relationships between similarity and 

properties of molecules 
 

9.37 pKi 9.08 



Data: Public Sources 

 ChEMBL 

- only activity annotations 

- analog series bias 

- for specific target: not representative sample of active 

chemical compounds 

 

 PubChem 

- HTS assay data less biased 

- less confident 

 



Data: Normalization 

 Molecular representations can vary 

- protonation states 

- salts 

 Consistent representation required 

- washing: 

 remove counter ions 

 consistent protonation states 
- nitrogen, oxygen, sulfur 

 hydrogen suppressed representation 

 Activity annotations might not be comparable 

- prefer pKi over IC50 

 IC50 depends on assay conditions like enzyme and substrate 

concentrations 

 



Representation & Distance Metric 

 Fingerprints 

 Descriptors 

 3-D conformations 

 Graph structures 

 

 Representation limits what can be perceived 

- only information encoded in the representation is 

available 

 Distance metric depends on the representation 



Representation: Descriptors 

 Numerical property descriptors 

- physicochemical descriptors 

 logP(O/W) 

 molecular weight, … 

- topological descriptors 

 connectivity indices 

 shape descriptors,… 

- count descriptors 

 # of nitrogen atoms 

 # of rings,…  

 numerical vector: (𝑥1, 𝑥2, … , 𝑥𝑛) 



Distance metric: Descriptors 

 Euclidean distance 

- 𝑑 𝑥, 𝑦 =  (𝑥𝑖 − 𝑦𝑖)
2 

 

 Important: Normalization 

- normalized Euclidean distance 

- standard deviations of sample data: 𝑠𝑖 

- 𝑑 𝑥, 𝑦 =
 (𝑥𝑖−𝑦𝑖)

2

𝑠𝑖
2  

 Kernel functions: 

- radial basis function (RBF): 𝜙 𝑟 = 𝑒−𝛾 𝑥−𝑦 2
 

 

 



Representation: Fingerprints 

=> binary vector (0,0,1,1,0,1,0,1) or feature set {2,3,5,7} 



Distance Metric: Fingerprints 

 Hamming/Manhattan distance 
- number of differing features 

- 𝑇𝑐 𝐴, 𝐵 = 𝐴 △ 𝐵 =  𝑎𝑖 − 𝑏𝑖 = 𝑎 − 𝑏 2 

 

 Tanimoto coefficient 
- ratio of the number of features two molecules have in common to the number of all 

occuring features 

- 𝑇𝑐 𝐴, 𝐵 =
𝐴∩𝐵

𝐴∪𝐵
=

 𝑎𝑖𝑏𝑖
 𝑎𝑖+ 𝑏𝑖− 𝑎𝑖𝑏𝑖

 

 

 Kernel function (RBF) 

- 𝑟 = 𝑎 − 𝑏  

- Gaussian: 𝜙 𝑟 = 𝑒−𝛾𝑟
2
 

 



Representation: Conformations 

 Volumetric shapes 

 

 

 

 Metric: 

- Shape superposition 

- ROCS 



Representation: Graph structures 

 2D Graph representations 

 

 

 

 

 Metrics: 

- Maximum common substructure (MCS): 

 ratio of number of bonds in MCS to total number of bonds 

- Graph kernels: 

 random walk kernel 



SVM in Compound Space 

 Compounds as data 

points 

 

 Negative class: 

inactive compounds 

 

 Positive class:    

active compounds 

 

 Compound reference 

space described by 

FP features 

 

x1 

x2 
negative class  

positive 

class  



SVM in Target-Ligand Space 

 Data points are target-

ligand pairs 

 

 Positive class:    

active compounds 

with true targets 

 

 Negative class: 

inactive compounds 

with pseudo targets 

x1 

x2 



Target-Ligand Kernel (TLK) 

target

space

Kligand(l1,l2) = 1Ktarget(T1,T2) = 0.26

Ktarget-ligand((T1,l1)(T2,l2)) = Ktarget(T1,T2)  Kligand(l1,l2)) = 0.26  1

SSGADYPDELQCLDAPVLSQAKC

NVGKGQPSVLQVVNLPIVERPVC

ligand

space

target

space

Kligand(l1,l2) = 1Ktarget(T1,T2) = 0.26

Ktarget-ligand((T1,l1)(T2,l2)) = Ktarget(T1,T2)  Kligand(l1,l2)) = 0.26  1

SSGADYPDELQCLDAPVLSQAKC

NVGKGQPSVLQVVNLPIVERPVC

ligand

space


